Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Indira Jutooru is active.

Publication


Featured researches published by Indira Jutooru.


Oncogene | 2013

HOTAIR IS A NEGATIVE PROGNOSTIC FACTOR AND EXHIBITS PRO-ONCOGENIC ACTIVITY IN PANCREATIC CANCER

Kyounghyun Kim; Indira Jutooru; Gayathri Chadalapaka; Greg A. Johnson; James H. Frank; Robert C. Burghardt; Sang Bae Kim; Stephen Safe

HOTAIR is a long intervening non-coding RNA (lincRNA) that associates with the Polycomb Repressive Complex 2 (PRC2) and overexpression is correlated with poor survival for breast, colon and liver cancer patients. In this study, we show that HOTAIR expression is increased in pancreatic tumors compared with non-tumor tissue and is associated with more aggressive tumors. Knockdown of HOTAIR (siHOTAIR) by RNA interference shows that HOTAIR has an important role in pancreatic cancer cell invasion, as reported in other cancer cell lines. In contrast, HOTAIR knockdown in Panc1 and L3.6pL pancreatic cancer cells that overexpress this lincRNA decreased cell proliferation, altered cell cycle progression and induced apoptosis, demonstrating an expanded function of HOTAIR in pancreatic cancer cells compared with other cancer cell lines. Results of gene array studies showed that there was minimal overlap between HOTAIR-regulated genes in pancreatic cells and breast cancer cells, and HOTAIR uniquely suppressed several interferon-related genes and gene sets related to cell cycle progression in pancreatic cancer cells and tumors. Analysis of selected genes suppressed by HOTAIR in Panc1 and L3.6pL cells showed by knockdown of EZH2 and chromatin immunoprecipitation assays that HOTAIR-mediated gene repression was both PRC2-dependent and -independent. HOTAIR knockdown in L3.6pL cells inhibited tumor growth in mouse xenograft model, further demonstrating the pro-oncogenic function of HOTAIR in pancreatic cancer.


Cancer Research | 2008

Curcumin Decreases Specificity Protein Expression in Bladder Cancer Cells

Gayathri Chadalapaka; Indira Jutooru; Sudhakar Chintharlapalli; Sabitha Papineni; Roger Smith; Xiangrong Li; Stephen Safe

Curcumin is the active component of tumeric, and this polyphenolic compound has been extensively investigated as an anticancer drug that modulates multiple pathways and genes. In this study, 10 to 25 micromol/L curcumin inhibited 253JB-V and KU7 bladder cancer cell growth, and this was accompanied by induction of apoptosis and decreased expression of the proapoptotic protein survivin and the angiogenic proteins vascular endothelial growth factor (VEGF) and VEGF receptor 1 (VEGFR1). Because expression of survivin, VEGF, and VEGFR1 are dependent on specificity protein (Sp) transcription factors, we also investigated the effects of curcumin on Sp protein expression as an underlying mechanism for the apoptotic and antiangiogenic activity of this compound. The results show that curcumin induced proteasome-dependent down-regulation of Sp1, Sp3, and Sp4 in 253JB-V and KU7 cells. Moreover, using RNA interference with small inhibitory RNAs for Sp1, Sp3, and Sp4, we observed that curcumin-dependent inhibition of nuclear factor kappaB (NF-kappaB)-dependent genes, such as bcl-2, survivin, and cyclin D1, was also due, in part, to loss of Sp proteins. Curcumin also decreased bladder tumor growth in athymic nude mice bearing KU7 cells as xenografts and this was accompanied by decreased Sp1, Sp3, and Sp4 protein levels in tumors. These results show for the first time that one of the underlying mechanisms of action of curcumin as a cancer chemotherapeutic agent is due, in part, to decreased expression of Sp transcription factors in bladder cancer cells.


Journal of Biological Chemistry | 2010

Inhibition of NFκB and Pancreatic Cancer Cell and Tumor Growth by Curcumin Is Dependent on Specificity Protein Down-regulation

Indira Jutooru; Gayathri Chadalapaka; Ping Lei; Stephen Safe

Curcumin activates diverse anticancer activities that lead to inhibition of cancer cell and tumor growth, induction of apoptosis, and antiangiogenic responses. In this study, we observed that curcumin inhibits Panc28 and L3.6pL pancreatic cancer cell and tumor growth in nude mice bearing L3.6pL cells as xenografts. In addition, curcumin decreased expression of p50 and p65 proteins and NFκB-dependent transactivation and also decreased Sp1, Sp3, and Sp4 transcription factors that are overexpressed in pancreatic cancer cells. Because both Sp transcription factors and NFκB regulate several common genes such as cyclin D1, survivin, and vascular endothelial growth factor that contribute to the cancer phenotype, we also investigated interactions between Sp and NFκB transcription factors. Results of Sp1, Sp3, and Sp4 knockdown by RNA interference demonstrate that both p50 and p65 are Sp-regulated genes and that inhibition of constitutive or tumor necrosis factor-induced NFκB by curcumin is dependent on down-regulation of Sp1, Sp3, and Sp4 proteins by this compound. Curcumin also decreased mitochondrial membrane potential and induced reactive oxygen species in pancreatic cancer cells, and this pathway is required for down-regulation of Sp proteins in these cells, demonstrating that the mitochondriotoxic effects of curcumin are important for its anticancer activities.


International Journal of Cancer | 2009

Oncogenic microRNA-27a is a target for anticancer agent methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate in colon cancer cells

Sudhakar Chintharlapalli; Sabitha Papineni; Maen Abdelrahim; Ala Abudayyeh; Indira Jutooru; Gayathri Chadalapaka; Fei Wu; Susanne U. Mertens-Talcott; Kathy Vanderlaag; Sung Dae Cho; Roger Smith; Stephen Safe

Methyl 2‐cyano‐3,11‐dioxo‐18β‐olean‐1,12‐dien‐30‐oate (CDODA‐Me) is a synthetic derivative of glycyrrhetinic acid, a triterpenoid phytochemical found in licorice extracts. CDODA‐Me inhibited growth of RKO and SW480 colon cancer cells and this was accompanied by decreased expression of Sp1, Sp3 and Sp4 protein and mRNA and several Sp‐dependent genes including survivin, vascular endothelial growth factor (VEGF), and VEGF receptor 1 (VEGFR1 or Flt‐1). CDODA‐Me also induced apoptosis, arrested RKO and SW480 cells at G2/M, and inhibited tumor growth in athymic nude mice bearing RKO cells as xenografts. CDODA‐Me decreased expression of microRNA‐27a (miR‐27a), and this was accompanied by increased expression of 2 miR‐27a‐regulated mRNAs, namely ZBTB10 (an Sp repressor) and Myt‐1 which catalyzes phosphorylation of cdc2 to inhibit progression of cells through G2/M. Both CDODA‐Me and antisense miR‐27a induced comparable responses in RKO and SW480 cells, suggesting that the potent anticarcinogenic activity of CDODA‐Me is due to repression of oncogenic miR‐27a.


Bioorganic & Medicinal Chemistry Letters | 2008

Structure-dependent inhibition of bladder and pancreatic cancer cell growth by 2-substituted glycyrrhetinic and ursolic acid derivatives.

Gayathri Chadalapaka; Indira Jutooru; Alan J. McAlees; Tom Stefanac; Stephen Safe

Derivatives of oleanolic acid, ursolic acid and glycyrrhetinic acid substituted with electron-withdrawing groups at the 2-position in the A-ring which also contains a 1-en-3-one structure are potent inhibitors of cancer cell growth. In this study, we have compared the effects of several 2-substituted analogs of triterpenoid acid methyl esters derived from ursolic and glycyrrhetinic acid on proliferation of KU7 and 253JB-V bladder and Panc-1 and Panc-28 pancreatic cancer cells. The results show that the 2-cyano and 2-trifluoromethyl derivatives were the most active compounds. The glycyrrhetinic acid derivatives with the rearranged C-ring containing the 9(11)-en-12-one structure were generally more active than the corresponding 12-en-11-one isomers. However, differences in growth inhibitory IC(50) values were highly variable and dependent on the 2-substituent (CN vs CF(3)) and cancer cell context.


Molecular Cancer Research | 2011

GT-094, a NO-NSAID, Inhibits Colon Cancer Cell Growth by Activation of a Reactive Oxygen Species-MicroRNA-27a: ZBTB10-Specificity Protein Pathway

Satya S. Pathi; Indira Jutooru; Gayathri Chadalapaka; Sandeep Sreevalsan; S. Anand; Gregory R. J. Thatcher; Stephen Safe

Ethyl 2-((2,3-bis(nitrooxy)propyl)disulfanyl)benzoate (GT-094) is a novel nitric oxide (NO) chimera containing an nonsteroidal anti-inflammatory drug (NSAID) and NO moieties and also a disulfide pharmacophore that in itself exhibits cancer chemopreventive activity. In this study, the effects and mechanism of action of GT-094 were investigated in RKO and SW480 colon cancer cells. GT-094 inhibited cell proliferation and induced apoptosis in both cell lines and this was accompanied by decreased mitochondrial membrane potential (MMP) and induction of reactive oxygen species (ROS), and these responses were reversed after cotreatment with the antioxidant glutathione. GT-094 also downregulated genes associated with cell growth [cyclin D1, hepatocyte growth factor receptor (c-Met), epidermal growth factor receptor (EGFR)], survival (bcl-2, survivin), and angiogenesis [VEGF and its receptors (VEGFR1 and VEGFR2)]. Results of previous RNA interference studies in this laboratory has shown that these genes are regulated, in part, by specificity protein (Sp) transcription factors Sp1, Sp3, and Sp4 that are overexpressed in colon and other cancer cell lines and not surprisingly, GT-094 also decreased Sp1, Sp3, and Sp4 in colon cancer cells. GT-094–mediated repression of Sp and Sp-regulated gene products was due to downregulation of microRNA-27a (miR-27a) and induction of ZBTB10, an Sp repressor that is regulated by miR-27a in colon cancer cells. Moreover, the effects of GT-094 on Sp1, Sp3, Sp4, miR-27a, and ZBTB10 were also inhibited by glutathione suggesting that the anticancer activity of GT-094 in colon cancer cells is due, in part, to activation of an ROS-miR-27a:ZBTB10-Sp transcription factor pathway. Mol Cancer Res; 9(2); 195–205. ©2010 AACR.


Molecular Cancer Therapeutics | 2007

Structure-dependent activity of glycyrrhetinic acid derivatives as peroxisome proliferator–activated receptor γ agonists in colon cancer cells

Sudhakar Chintharlapalli; Sabitha Papineni; Indira Jutooru; Alan J. McAlees; Stephen Safe

Glycyrrhizin, a pentacyclic triterpene glycoside, is the major phytochemical in licorice. This compound and its hydrolysis product glycyrrhetinic acid have been associated with the multiple therapeutic properties of licorice extracts. We have investigated the effects of 2-cyano substituted analogues of glycyrrhetinic acid on their cytotoxicities and activity as selective peroxisome proliferator–activated receptor γ (PPARγ) agonists. Methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate (β-CDODA-Me) and methyl 2-cyano-3,11-dioxo-18α-olean-1,12-dien-30-oate (α-CDODA-Me) were more cytotoxic to colon cancer cells than their des-cyano analogues and introduction of the 2-cyano group into the pentacyclic ring system was necessary for the PPARγ agonist activity of α-CDODA-Me and β-CDODA-Me isomers. However, in mammalian two-hybrid assays, both compounds differentially induced interactions of PPARγ with coactivators, suggesting that these isomers, which differ only in the stereochemistry at C18 which affects conformation of the E-ring, are selective receptor modulators. This selectivity in colon cancer cells was shown for the induction of two proapoptotic proteins, namely caveolin-1 and the tumor-suppressor gene Krüppel-like factor-4 (KLF-4). β-CDODA-Me but not α-CDODA-Me induced caveolin-1 in SW480 colon cancer cells, whereas caveolin-1 was induced by both compounds in HT-29 and HCT-15 colon cancer cells. The CDODA-Me isomers induced KLF-4 mRNA levels in HT-29 and SW480 cells but had minimal effects on KLF-4 expression in HCT-15 cells. These induced responses were inhibited by cotreatment with a PPARγ antagonist. This shows for the first time that PPARγ agonists derived from glycyrrhetinic acid induced cell-dependent caveolin-1 and KLF-4 expression through receptor-dependent pathways. [Mol Cancer Ther 2007;6(5):1588–98]


Molecular Pharmacology | 2010

Methyl 2-cyano-3,12-dioxooleana-1,9-dien-28-oate decreases specificity protein transcription factors and inhibits pancreatic tumor growth: role of microRNA-27a.

Indira Jutooru; Gayathri Chadalapaka; Maen Abdelrahim; Riyaz Basha; Ismael Samudio; Marina Konopleva; Michael Andreeff; Stephen Safe

The anticancer agent 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO) and its methyl ester (CDDO-Me) typically induce a broad spectrum of growth-inhibitory, proapoptotic, and antiangiogenic responses. Treatment of Panc1, Panc28, and L3.6pL pancreatic cancer cells with low micromolar concentrations of CDDO or CDDO-Me resulted in growth inhibition, induction of apoptosis, and down-regulation of cyclin D1, survivin, vascular endothelial growth factor (VEGF), and its receptor (VEGFR2). RNA interference studies indicate that these repressed genes are regulated by specificity protein (Sp) transcription factors Sp1, Sp3, and Sp4, and Western blot analysis of lysates from pancreatic cancer cells treated with CDDO and CDDO-Me shows for the first time that both compounds decreased the expression of Sp1, Sp3, and Sp4. Moreover, CDDO-Me (7.5 mg/kg/day) also inhibited pancreatic human L3.6pL tumor growth and down-regulated Sp1, Sp3, and Sp4 in tumors using an orthotopic pancreatic cancer model. CDDO-Me also induced reactive oxygen species (ROS) and decreased mitochondrial membrane potential (MMP) in Panc1 and L3.6pL cells, and cotreatment with antioxidants (glutathione and dithiothreitol) blocked the formation of ROS, reversed the loss of MMP, and inhibited down-regulation of Sp1, Sp3, and Sp4. Repression of Sp and Sp-dependent genes by CDDO-Me was due to the down-regulation of microRNA-27a and induction of zinc finger and BTB domain containing 10 (ZBTB10), an Sp repressor, and these responses were also reversed by antioxidants. Thus, the anticancer activity of CDDO-Me is due, in part, to activation of ROS, which in turn targets the microRNA-27a:ZBTB10-Sp transcription factor axis. This results in decreased expression of Sp-regulated genes, growth inhibition, induction of apoptosis, and antiangiogenic responses.


PLOS ONE | 2012

Aspirin Inhibits Colon Cancer Cell and Tumor Growth and Downregulates Specificity Protein (Sp) Transcription Factors

Satya S. Pathi; Indira Jutooru; Gayathri Chadalapaka; Vijayalekshmi Nair; Syng-Ook Lee; Stephen Safe

Acetylsalicylic acid (aspirin) is highly effective for treating colon cancer patients postdiagnosis; however, the mechanisms of action of aspirin in colon cancer are not well defined. Aspirin and its major metabolite sodium salicylate induced apoptosis and decreased colon cancer cell growth and the sodium salt of aspirin also inhibited tumor growth in an athymic nude mouse xenograft model. Colon cancer cell growth inhibition was accompanied by downregulation of Sp1, Sp3 and Sp4 proteins and decreased expression of Sp-regulated gene products including bcl-2, survivin, VEGF, VEGFR1, cyclin D1, c-MET and p65 (NFκB). Moreover, we also showed by RNA interference that β-catenin, an important target of aspirin in some studies, is an Sp-regulated gene. Aspirin induced nuclear caspase-dependent cleavage of Sp1, Sp3 and Sp4 proteins and this response was related to sequestration of zinc ions since addition of zinc sulfate blocked aspirin-mediated apoptosis and repression of Sp proteins. The results demonstrate an important underlying mechanism of action of aspirin as an anticancer agent and, based on the rapid metabolism of aspirin to salicylate in humans and the high salicylate/aspirin ratios in serum, it is likely that the anticancer activity of aspirin is also due to the salicylate metabolite.


Molecular Cancer Research | 2010

Drugs that Target Specificity Proteins Downregulate Epidermal Growth Factor Receptor in Bladder Cancer Cells

Gayathri Chadalapaka; Indira Jutooru; Robert C. Burghardt; Stephen Safe

The epidermal growth factor receptor (EGFR) is an important chemotherapeutic target for tyrosine kinase inhibitors and antibodies that block the extracellular domain of EGFR. Betulinic acid (BA) and curcumin inhibited bladder cancer cell growth and downregulated specificity protein (Sp) transcription factors, and this was accompanied by decreased expression of EGFR mRNA and protein levels. EGFR, a putative Sp-regulated gene, was also decreased in cells transfected with a cocktail (iSp) containing small inhibitory RNAs for Sp1, Sp3, and Sp4, and RNA interference with individual Sp knockdown indicated that EGFR expression was primarily regulated by Sp1 and Sp3. BA, curcumin, and iSp also decreased phosphorylation of Akt in these cells, and downregulation of EGFR by BA, curcumin, and iSp was accompanied by induction of LC3 and autophagy, which is consistent with recent studies showing that EGFR suppresses autophagic cell death. The results show that EGFR is an Sp-regulated gene in bladder cancer, and drugs such as BA and curcumin that repress Sp proteins also ablate EGFR expression. Thus, compounds such as curcumin and BA that downregulate Sp transcription factors represent a novel class of anticancer drugs that target EGFR in bladder cancer cells and tumors by inhibiting receptor expression. Mol Cancer Res; 8(5); 739–50. ©2010 AACR.

Collaboration


Dive into the Indira Jutooru's collaboration.

Researchain Logo
Decentralizing Knowledge