Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ingo Regolin is active.

Publication


Featured researches published by Ingo Regolin.


Journal of Applied Physics | 2009

Controllable p-type doping of GaAs nanowires during vapor-liquid-solid growth

Christoph Gutsche; Ingo Regolin; Kai Blekker; Andrey Lysov; W. Prost; F.-J. Tegude

We report on controlled p-type doping of GaAs nanowires grown by metal-organic vapor-phase epitaxy on (111)B GaAs substrates using the vapor-liquid-solid growth mode. p-type doping of GaAs nanowires was realized by an additional diethyl zinc flow during the growth. Compared to nominally undoped structures, the current increases by more than six orders of magnitude. The transfer characteristics of fabricated nanowire metal-insulator-semiconductor field-effect transistor devices proved p-type conductivity. By adjusting the II/III ratio, controlled doping concentrations from 4.6×1018 up to 2.3×1019 cm−3 could be achieved at a growth temperature of 400 °C. The doping concentrations were estimated from electrical conductivity measurements applied to single nanowires with different diameters. This estimation is based on a mobility versus carrier concentration model with surface depletion included.


IEEE Electron Device Letters | 2007

High Transconductance MISFET With a Single InAs Nanowire Channel

Quoc-Thai Do; Kai Blekker; Ingo Regolin; W. Prost; Franz-Josef Tegude

Metal-insulator field-effect transistors (FETs) are fabricated using a single n-InAs nanowire (NW) with a diameter of d = 50 nm as a channel and a silicon nitride gate dielectric. The gate length and dielectric scaling behavior is experimentally studied by means of dc output- and transfer-characteristics and is modeled using the long-channel MOSFET equations. The device properties are studied for an insulating layer thickness of 20-90 nm, while the gate length is varied from 1 to 5 mum. The InAs NW FETs exhibit an excellent saturation behavior and best breakdown voltage values of V BR > 3 V. The channel current divided by diameter d of an NW reaches 3 A/mm. A maximum normalized transconductance gm /d > 2 S/mm at room temperature is routinely measured for devices with a gate length of les 2 mum and a gate dielectric layer thickness of les 30 nm.


Small | 2009

Alignment of Semiconductor Nanowires Using Ion Beams

Christian Borschel; Raphael Niepelt; Sebastian Geburt; Christoph Gutsche; Ingo Regolin; W. Prost; Franz-Josef Tegude; Daniel Stichtenoth; Daniel Schwen; Carsten Ronning

Gallium arsenide nanowires are grown on 100 GaAs substrates, adopting the epitaxial relation and thus growing with an angle around 35 degrees off the substrate surface. These straight nanowires are irradiated with different kinds of energetic ions. Depending on the ion species and energy, downwards or upwards bending of the nanowires is observed to increase with ion fluence. In the case of upwards bending, the nanowires can be aligned towards the ion beam direction at high fluences. Defect formation (vacancies and interstitials) within the implantation cascade is identified as the key mechanism for bending. Monte Carlo simulations of the implantation are presented to substantiate the results.


Nanoscale Research Letters | 2010

n-Type Doping of Vapor–Liquid–Solid Grown GaAs Nanowires

Christoph Gutsche; Andrey Lysov; Ingo Regolin; Kai Blekker; W. Prost; Franz-Josef Tegude

In this letter, n-type doping of GaAs nanowires grown by metal–organic vapor phase epitaxy in the vapor–liquid–solid growth mode on (111)B GaAs substrates is reported. A low growth temperature of 400°C is adjusted in order to exclude shell growth. The impact of doping precursors on the morphology of GaAs nanowires was investigated. Tetraethyl tin as doping precursor enables heavily n-type doped GaAs nanowires in a relatively small process window while no doping effect could be found for ditertiarybutylsilane. Electrical measurements carried out on single nanowires reveal an axially non-uniform doping profile. Within a number of wires from the same run, the donor concentrations ND of GaAs nanowires are found to vary from 7 × 1017 cm-3 to 2 × 1018 cm-3. The n-type conductivity is proven by the transfer characteristics of fabricated nanowire metal–insulator-semiconductor field-effect transistor devices.


Nanotechnology | 2009

Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy

Sasa Vinaji; A Lochthofen; Wolfgang Mertin; Ingo Regolin; Christoph Gutsche; W. Prost; Franz-Josef Tegude; G. Bacher

We demonstrate the potential of Kelvin probe force microscopy for simultaneously probing the topography and the work function of individual nanowires. Our technique allows us to visualize both the material and the doping contrast in single GaAs-based nanowires without the need to electrically contact the nanowires. In a GaAs/GaP heterostructure nanowire, a core-shell structure is found. This is attributed to a thermally activated radial overgrowth of GaAs, while in the GaP region the vertical nanowire growth dominates. In partially p-doped GaAs nanowires the doping transitions can be localized and the width of the depletion layer is estimated.


Applied Physics Letters | 2008

P-type doping of GaAs nanowires

Daniel Stichtenoth; K. Wegener; Christoph Gutsche; Ingo Regolin; Franz-Josef Tegude; W. Prost; M. Seibt; Carsten Ronning

Gallium arsenide (GaAs) nanowires with diameters of 150nm have been grown via metal-organic vapor deposition and were subsequently implanted with Zn64 ions. The amorphized nanowires were annealed at 800°C under arsenic overpressure resulting into a full recrystallization of the nanowires as well as an activation of the implanted acceptors. Consequently, we observe a strong increase in conductivity of the GaAs:Zn nanowires, where a simple estimation of the activated acceptors matches the implantation concentration.


Nanotechnology | 2011

A precise optical determination of nanoscale diameters of semiconductor nanowires

Gerald Brönstrup; Christian Leiterer; Norbert Jahr; Christoph Gutsche; Andrey Lysov; Ingo Regolin; W. Prost; Franz-Josef Tegude; Wolfgang Fritzsche; S. Christiansen

Electrical and optical properties of semiconducting nanowires (NWs) strongly depend on their diameters. Therefore, a precise knowledge of their diameters is essential for any kind of device integration. Here, we present an optical method based on dark field optical microscopy to easily determine the diameters of individual NWs with an accuracy of a few nanometers and thus a relative error of less than 10%. The underlying physical principle of this method is that strong Mie resonances dominate the optical scattering spectra of most semiconducting NWs and can thus be exploited. The feasibility of this method is demonstrated using GaAs NWs but it should be applicable to most types of semiconducting NWs as well. Dark field optical microscopy shows that even slight tapering of the NWs, i.e. diameter variations of a few nanometers, can be detected by a visible color change. Abrupt diameter changes of a few nanometers, as they occur for example when growth conditions vary, can be determined as well. In addition a profound analysis of the elastic scattering properties of individual GaAs NWs is presented theoretically using Mie calculations as well as experimentally by dark field microscopy. This method has the advantage that no vacuum technique is needed, a fast and reliable analysis is possible based on cheap standard hardware.


Nanotechnology | 2011

Optical properties of heavily doped GaAs nanowires and electroluminescent nanowire structures

Andrey Lysov; Matthias Offer; Christoph Gutsche; Ingo Regolin; Topaloglu S; Martin Geller; W. Prost; Franz-Josef Tegude

We present GaAs electroluminescent nanowire structures fabricated by metal organic vapor phase epitaxy. Electroluminescent structures were realized in both axial pn-junctions in single GaAs nanowires and free-standing nanowire arrays with a pn-junction formed between nanowires and substrate, respectively. The electroluminescence emission peak from single nanowire pn-junctions at 10 K was registered at an energy of around 1.32 eV and shifted to 1.4 eV with an increasing current. The line is attributed to the recombination in the compensated region present in the nanowire due to the memory effect of the vapor-liquid-solid growth mechanism. Arrayed nanowire electroluminescent structures with a pn-junction formed between nanowires and substrate demonstrated at 5 K a strong electroluminescence peak at 1.488 eV and two shoulder peaks at 1.455 and 1.519 eV. The main emission line was attributed to the recombination in the p-doped GaAs. The other two lines correspond to the tunneling-assisted photon emission and band-edge recombination in the abrupt junction, respectively. Electroluminescence spectra are compared with the micro-photoluminescence spectra taken along the single p-, n- and single nanowire pn-junctions to find the origin of the electroluminescence peaks, the distribution of doping species and the sharpness of the junctions.


IEEE Transactions on Nanotechnology | 2010

High-Frequency Measurements on InAs Nanowire Field-Effect Transistors Using Coplanar Waveguide Contacts

Kai Blekker; Benjamin Munstermann; A. Matiss; Quoc Thai Do; Ingo Regolin; W. Brockerhoff; W. Prost; Franz-Josef Tegude

In this paper, a 50-μm-pitch coplanar waveguide pattern for on-wafer high-frequency measurements on nanowire FET is used. The contact structure exhibits relatively large parasitic elements in comparison to the intrinsic device making a precise deembedding both necessary and challenging. A single InAs nanowire FET with a large gate length of 1.4 μm possesses after deembedding a maximum stable gain higher than 30 dB and a maximum oscillation frequency of 15 GHz. The gate length scaling of the nanowire transistor is modeled using the experimental transconductance data of a set of transistors and an analytical model. On this basis, both the device performance and the expectation of high-frequency measurements at small gate lengths are discussed.


Journal of Applied Physics | 2006

Composition control in metal-organic vapor-phase epitaxy grown InGaAs nanowhiskers

Ingo Regolin; V. Khorenko; W. Prost; Franz-Josef Tegude; D. Sudfeld; J. Kästner; G. Dumpich

InGaAs nanowhiskers were grown by metal-organic vapor-phase epitaxy on (111)B GaAs substrates using the vapor-liquid-solid growth mode. The diameter of nanowhiskers was defined by monodisperse gold nanoparticles deposited on the GaAs substrate from the liquid phase. By adjusting the triethylgallium to trimethylindium flow ratio, InxGa1−xAs whiskers with various compositions were realized. The composition characterization of the grown whiskers was done by high-resolution x-ray diffractometry. A detailed analysis of measured spectra allowed resolving the presence of an InGaAs three-dimensional layer between whiskers. High-resolution transmission electron microscopy investigation revealed the lattice constant of the grown whisker structures, which agrees with the whisker composition defined by x-ray diffractometry. Finally, low-temperature photoluminescence measurements of the realized InGaAs whiskers were carried out.

Collaboration


Dive into the Ingo Regolin's collaboration.

Top Co-Authors

Avatar

W. Prost

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Franz-Josef Tegude

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Christoph Gutsche

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Andrey Lysov

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Kai Blekker

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

F.-J. Tegude

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Quoc-Thai Do

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

V. Khorenko

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Benjamin Munstermann

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge