Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Iuliana Radu is active.

Publication


Featured researches published by Iuliana Radu.


international electron devices meeting | 2011

10×10nm 2 Hf/HfO x crossbar resistive RAM with excellent performance, reliability and low-energy operation

Bogdan Govoreanu; Gouri Sankar Kar; Y-Y. Chen; V. Paraschiv; S. Kubicek; Andrea Fantini; Iuliana Radu; Ludovic Goux; Sergiu Clima; Robin Degraeve; N. Jossart; Olivier Richard; T. Vandeweyer; K. Seo; Paul Hendrickx; Geoffrey Pourtois; Hugo Bender; Laith Altimime; Dirk Wouters; Jorge Kittl; Malgorzata Jurczak

We report on worlds smallest HfO2-based Resistive RAM (RRAM) cell to date, featuring a novel Hf/HfOx resistive element stack, with an area of less than 10×10 nm2, fast ns-range on/off switching times at low-voltages and with a switching energy per bit of <0.1pJ. With excellent endurance of more than 5.107cycles, large on/off verified-window (>50), no closure of the on/off window after 30hrs/200C and failure-free device operation after 30hrs/250C thermal stress, the major device-level nonvolatile memory requirements are met. Furthermore, we clarify the impact of film crystallinity on cell operation from a scalability viewpoint, the role of the cap layer and bring insight into the switching mechanisms.


international electron devices meeting | 2013

Vacancy-modulated conductive oxide resistive RAM (VMCO-RRAM): An area-scalable switching current, self-compliant, highly nonlinear and wide on/off-window resistive switching cell

Bogdan Govoreanu; Augusto Redolfi; Leqi Zhang; Christoph Adelmann; Mihaela Ioana Popovici; Sergiu Clima; Hubert Hody; V. Paraschiv; Iuliana Radu; Alexis Franquet; Jen-Chieh Liu; Johan Swerts; Olivier Richard; Hugo Bender; Laith Altimime; Malgorzata Jurczak

We report a novel self-compliant and self-rectifying resistive switching memory cell, with area-scalable switching currents, featuring a set current density of ~5nA/nm2 (<;9uA for a 40nm-size cell), high on-state half-bias nonlinearity of 102 and low reset current density of <;0.6nA/nm2 (<;1uA@40nm size). The cell can be operated at below ±4V/10ns, with a large on/off window of >102 and retention extrapolates to 10yr at 101°C. The switching stack is fully based on ALD processes, using common high-k dielectrics and has a thickness of <;10nm, meeting the 3D Vertical RRAM requirements. Moreover, we point out the nonlinearity-low-current operation interdependence and discuss the scaling potential of the areal switching RRAM for reliable sub-μA current operation in the 10nm-cell size realm.


IEEE Electron Device Letters | 2014

Ultrathin Metal/Amorphous-Silicon/Metal Diode for Bipolar RRAM Selector Applications

Leqi Zhang; Augusto Redolfi; Christoph Adelmann; Sergiu Clima; Iuliana Radu; Yangyin Chen; Dirk Wouters; Guido Groeseneken; Malgorzata Jurczak; Bogdan Govoreanu

We propose a novel metal/silicon/metal (MSM) selector using ultrathin undoped amorphous silicon (a-Si) for resistive-RAM selector application. The new selector behaves as a bidirectional diode, showing a high current drive (~2.2 MA/cm)2, high selectivity (~240 for 1/2 bias), fast switching speed , and excellent endurance ( at target drive current). The doping-free a-Si structure alleviates the dopant-induced variability concerns for ultrascaled devices and eliminates the need for a dopant-activation anneal. Circuit simulations show feasibility of 1-Mb array, with over 25% read margin and 70% write margin, when using the new MSM structure as a selector for a HfO2-based resistive switching memory element.


IEEE Transactions on Electron Devices | 2013

Complementary Role of Field and Temperature in Triggering ON/OFF Switching Mechanisms in

Bogdan Govoreanu; Sergiu Clima; Iuliana Radu; Yangyin Chen; Dirk Wouters; Malgorzata Jurczak

We present an investigation on the role of temperature and electric field as driving forces in the initiation of the resistive switching processes. The impact of temperature in both on- and off-states is analyzed in detail, using an electrothermal numerical model formulation. dc and pulsed temperature-dependent data, collected on scaled crossbar test structure cells, serially connected with an on-chip control transistor, are used to extract material information and are furthermore analyzed in conjunction with model outputs. With these results, further discussion is presented, suggesting points of attention for scaled cell design in the below-10-nm realm.


Journal of Applied Physics | 2012

{\rm Hf}/{\rm HfO}_{2}

Koen Martens; Iuliana Radu; Sofie Mertens; Xiaoping Shi; L. Nyns; S. Cosemans; Paola Favia; Hugo Bender; Thierry Conard; M. Schaekers; S. De Gendt; V. V. Afanas'ev; Jorge Kittl; M. Heyns; M. Jurczak

Transition metal compounds showing a metal-insulator transition (MIT) show complex behavior due to strongly correlated electron effects and offer attractive properties for nano-electronics applications, which cannot be obtained with regular semiconductors. MIT based nano-electronics, however, remains unproven, and MIT devices are poorly understood. We point out and single out one of the major hurdles preventing MIT-electronics: obtaining a high Off resistance and high On-Off resistance ratio in an MIT switch. We show a path toward an MIT switch fulfilling strict Off and On resistance criteria by: (1) Obtaining understanding of the VO2-interface, a protoypical MIT material interface. (2) Introducing a MIT tunnel junction concept to tune switch resistances. In this junction, the metal or insulating phase of the MIT material controls how much current flows through. Adapting the junctions parameters allows tuning the MIT switchs Off and On resistance. (3) Providing proof of principle of the junction and its...


Journal of Materials Chemistry C | 2015

Resistive RAM Cells

Geert Rampelberg; Bob De Schutter; Wouter Devulder; Koen Martens; Iuliana Radu; Christophe Detavernier

VO2 and V2O3 thin films have been prepared by controlled oxidation and reduction reactions in the vanadium–oxygen system. During these reactions, crystalline phase formation and stability were characterized by means of in situ X-ray diffraction. Oxidation of vanadium thin films was carried out over a wide range of oxygen partial pressures between 0.2 and 200 mbar and temperatures between 430 °C and 615 °C. Depending on the oxygen partial pressures and temperatures, VO2, V6O13 and V2O5 could be obtained as pure or mixed phases. Reduction of V2O5 in 50 mbar H2 resulted in a continuous reduction to V2O3. Stabilization of the VO2 phase was obtained by adding low O2 concentrations in the range from 0.2 to 2 mbar to the H2 gas, a method which proved to be successful also for the controlled oxidation of vanadium to VO2. The semiconductor−metal transition was observed by means of temperature dependent sheet resistance measurements. VO2 films prepared by the oxidation of vanadium at low oxygen partial pressures were characterized by a 3 orders of magnitude decrease in resistance during transition. Annealing in air only yielded comparable switching ratios when the annealing time was carefully optimized. Both the VO2 films prepared by oxidation of vanadium or reduction of V2O5 in the mixture of H2 and O2 showed 4 to 5 orders of magnitude switching, which is close to the best reported values for bulk, single-crystal VO2. This excellent switching performance is believed to originate from a decreased level of defects at grain boundaries and in the bulk. In addition, the V2O3 films prepared by reduction of V2O5 showed a 3 orders of magnitude increase in resistance near −100 °C. Our results provide methods for transforming vanadium oxide phases into VO2 and V2O3 with high resistance switching ratios.


Applied Physics Letters | 2015

The VO2 interface, the metal-insulator transition tunnel junction, and the metal-insulator transition switch On-Off resistance

Maria Politou; Inge Asselberghs; Iuliana Radu; Thierry Conard; Olivier Richard; Chang Seung Lee; Koen Martens; Safak Sayan; Cedric Huyghebaert; Zsolt Tokei; Stefan De Gendt; Marc Heyns

Achieving low resistance contacts to graphene is a common concern for graphene device performance and hybrid graphene/metal interconnects. In this work, we have used the circular Transfer Length Method (cTLM) to electrically characterize Ag, Au, Ni, Ti, and Pd as contact metals to graphene. The consistency of the obtained results was verified with the characterization of up to 72 cTLM structures per metal. Within our study, the noble metals Au, Ag and Pd, which form a weaker bond with graphene, are shown to result in lower contact resistance (Rc) values compared to the more reactive Ni and Ti. X-ray Photo Electron Spectroscopy and Transmission Electron Microscopy characterization for the latter have shown the formation of Ti and Ni carbides. Graphene/Pd contacts show a distinct intermediate behavior. The weak carbide formation signature and the low Rc values measured agree with theoretical predictions of an intermediate state of weak chemisorption of Pd on graphene.


Journal of Materials Chemistry C | 2016

In situ X-ray diffraction study of the controlled oxidation and reduction in the V–O system for the synthesis of VO2 and V2O3 thin films

Markus Heyne; Daniele Chiappe; Johannes Meersschaut; Thomas Nuytten; Thierry Conard; Hugo Bender; Cedric Huyghebaert; Iuliana Radu; Matty Caymax; J.-F. de Marneffe; Erik C. Neyts; S. De Gendt

We investigated the deposition of MoS2 multilayers on large area substrates. The pre-deposition of metal or metal oxide with subsequent sulfurization is a promising technique to achieve layered films. We distinguish a different reaction behavior in metal oxide and metallic films and investigate the effect of the temperature, the H2S/H2 gas mixture composition, and the role of the underlying substrate on the material quality. The results of the experiments suggest a MoS2 growth mechanism consisting of two subsequent process steps. At first, the reaction of the sulfur precursor with the metal or metal oxide occurs, requiring higher temperatures in the case of metallic film compared to metal oxide. At this stage, the basal planes assemble towards the diffusion direction of the reaction educts and products. After the sulfurization reaction, the material recrystallizes and the basal planes rearrange parallel to the substrate to minimize the surface energy. Therefore, substrates with low roughness show basal plane assembly parallel to the substrate. These results indicate that the substrate character has a significant impact on the assembly of low dimensional MoS2 films.


Applied Physics Letters | 2014

Transition metal contacts to graphene

M. Popovici; J. Swerts; Augusto Redolfi; B. Kaczer; Marc Aoulaiche; Iuliana Radu; Sergiu Clima; Jean-Luc Everaert; S. Van Elshocht; M. Jurczak

Improved metal-insulator-metal capacitor (MIMCAP) stacks with strontium titanate (STO) as dielectric sandwiched between Ru as top and bottom electrode are shown. The Ru/STO/Ru stack demonstrates clearly its potential to reach sub-20 nm technology nodes for dynamic random access memory. Downscaling of the equivalent oxide thickness, leakage current density (Jg) of the MIMCAPs, and physical thickness of the STO have been realized by control of the Sr/Ti ratio and grain size using a heterogeneous TiO2/STO based nanolaminate stack deposition and a two-step crystallization anneal. Replacement of TiN with Ru as both top and bottom electrodes reduces the amount of electrically active defects and is essential to achieve a low leakage current in the MIM capacitor.


Applied Physics Letters | 2016

Multilayer MoS2 growth by metal and metal oxide sulfurization

Florin Ciubotaru; T. Devolder; Mauricio Manfrini; Christoph Adelmann; Iuliana Radu

We develop an all electrical experiment to perform the broadband phase-resolved spectroscopy of propagating spin waves in micrometer sized thin magnetic stripes. The magnetostatic surface spin waves are excited and detected by scaled down to 125 nm wide inductive antennas, which award ultra broadband wavevector capability. The wavevector selection can be done by applying an excitation frequency above the ferromagnetic resonance. Wavevector demultiplexing is done at the spin wave detector thanks to the rotation of the spin wave phase upon propagation. A simple model accounts for the main features of the apparatus transfer functions. Our approach opens an avenue for the all electrical study of wavevector-dependent spin wave properties including dispersion spectra or non-reciprocal propagation.

Collaboration


Dive into the Iuliana Radu's collaboration.

Top Co-Authors

Avatar

Marc Heyns

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Cedric Huyghebaert

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Stefan De Gendt

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Koen Martens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Praveen Raghavan

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Aaron Thean

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Dennis Lin

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Bart Soree

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Inge Asselberghs

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Daniele Chiappe

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge