Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivan Rajkovic is active.

Publication


Featured researches published by Ivan Rajkovic.


Nature | 2015

Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)(5) in solution

Ph. Wernet; Kristjan Kunnus; Ida Josefsson; Ivan Rajkovic; Wilson Quevedo; Martin Beye; Simon Schreck; S. Grübel; Mirko Scholz; Dennis Nordlund; Wenkai Zhang; Robert W. Hartsock; W. F. Schlotter; J. J. Turner; Brian Kennedy; Franz Hennies; F.M.F. de Groot; Kelly J. Gaffney; Simone Techert; Michael Odelius; A. Föhlisch

Transition-metal complexes have long attracted interest for fundamental chemical reactivity studies and possible use in solar energy conversion. Electronic excitation, ligand loss from the metal centre, or a combination of both, creates changes in charge and spin density at the metal site that need to be controlled to optimize complexes for photocatalytic hydrogen production and selective carbon–hydrogen bond activation. An understanding at the molecular level of how transition-metal complexes catalyse reactions, and in particular of the role of the short-lived and reactive intermediate states involved, will be critical for such optimization. However, suitable methods for detailed characterization of electronic excited states have been lacking. Here we show, with the use of X-ray laser-based femtosecond-resolution spectroscopy and advanced quantum chemical theory to probe the reaction dynamics of the benchmark transition-metal complex Fe(CO)5 in solution, that the photo-induced removal of CO generates the 16-electron Fe(CO)4 species, a homogeneous catalyst with an electron deficiency at the Fe centre, in a hitherto unreported excited singlet state that either converts to the triplet ground state or combines with a CO or solvent molecule to regenerate a penta-coordinated Fe species on a sub-picosecond timescale. This finding, which resolves the debate about the relative importance of different spin channels in the photochemistry of Fe(CO)5 (refs 4, 16,17,18,19 and 20), was made possible by the ability of femtosecond X-ray spectroscopy to probe frontier-orbital interactions with atom specificity. We expect the method to be broadly applicable in the chemical sciences, and to complement approaches that probe structural dynamics in ultrafast processes.


Review of Scientific Instruments | 2012

A setup for resonant inelastic soft x-ray scattering on liquids at free electron laser light sources

Kristjan Kunnus; Ivan Rajkovic; Simon Schreck; Wilson Quevedo; Sebastian Eckert; M. Beye; Edlira Suljoti; Christian Weniger; Christian Kalus; S. Grübel; Mirko Scholz; Dennis Nordlund; Wenkai Zhang; Robert W. Hartsock; Kelly J. Gaffney; W. F. Schlotter; J. J. Turner; Brian Kennedy; Franz Hennies; Simone Techert; Philippe Wernet; A. Föhlisch

We present a flexible and compact experimental setup that combines an in vacuum liquid jet with an x-ray emission spectrometer to enable static and femtosecond time-resolved resonant inelastic soft x-ray scattering (RIXS) measurements from liquids at free electron laser (FEL) light sources. We demonstrate the feasibility of this type of experiments with the measurements performed at the Linac Coherent Light Source FEL facility. At the FEL we observed changes in the RIXS spectra at high peak fluences which currently sets a limit to maximum attainable count rate at FELs. The setup presented here opens up new possibilities to study the structure and dynamics in liquids.


Applied Physics Letters | 2009

Observation of ultrafast lattice heating using time resolved electron diffraction

M. Ligges; Ivan Rajkovic; Ping Zhou; O. Posth; C. Hassel; G. Dumpich; D. von der Linde

We use ultrafast electron diffraction to study lattice heating of 20nm noble metal films after femtosecond optical excitation with moderate excitation fluences. Using the Debye–Waller effect, the rise times of the lattice temperature were measured to be 1.1ps in copper (5.9mJ∕cm2 incident fluence) and 4.7ps in gold (0.9mJ∕cm2).


Journal of Physics B | 2014

Femtosecond x-ray photoelectron diffraction on gas-phase dibromobenzene molecules

Daniel Rolles; Rebecca Boll; Marcus Adolph; Andy Aquila; Christoph Bostedt; John D. Bozek; Henry N. Chapman; Ryan Coffee; Nicola Coppola; P. Decleva; Tjark Delmas; Sascha W. Epp; Benjamin Erk; Frank Filsinger; Lutz Foucar; Lars Gumprecht; André Hömke; Tais Gorkhover; Lotte Holmegaard; Per Johnsson; Ch Kaiser; Faton Krasniqi; K. U. Kühnel; Jochen Maurer; Marc Messerschmidt; R. Moshammer; Wilson Quevedo; Ivan Rajkovic; Arnaud Rouzée; Benedikt Rudek

We present time-resolved femtosecond photoelectron momentum images and angular distributions of dissociating, laser-aligned 1,4-dibromobenzene (C6H4Br2) molecules measured in a near-infrared pump, soft-x-ray probe experiment performed at an x-ray free-electron laser. The observed alignment dependence of the bromine 2p photoelectron angular distributions is compared to density functional theory calculations and interpreted in terms of photoelectron diffraction. While no clear time-dependent effects are observed in the angular distribution of the Br(2p) photoelectrons, other, low-energy electrons show a pronounced dependence on the time delay between the near-infrared laser and the x-ray pulse.


Structural Dynamics | 2016

Identification of the dominant photochemical pathways and mechanistic insights to the ultrafast ligand exchange of Fe(CO)5 to Fe(CO)4EtOH

Kristjan Kunnus; Ida Josefsson; Ivan Rajkovic; Simon Schreck; Wilson Quevedo; Martin Beye; Christian Weniger; S. Grübel; Mirko Scholz; Dennis Nordlund; Wenkai Zhang; Robert W. Hartsock; Kelly J. Gaffney; W. F. Schlotter; J. J. Turner; Brian K. Kennedy; Franz Hennies; F.M.F. de Groot; Simone Techert; Michael Odelius; Ph. Wernet; A. Föhlisch

We utilized femtosecond time-resolved resonant inelastic X-ray scattering and ab initio theory to study the transient electronic structure and the photoinduced molecular dynamics of a model metal carbonyl photocatalyst Fe(CO)5 in ethanol solution. We propose mechanistic explanation for the parallel ultrafast intra-molecular spin crossover and ligation of the Fe(CO)4 which are observed following a charge transfer photoexcitation of Fe(CO)5 as reported in our previous study [Wernet et al., Nature 520, 78 (2015)]. We find that branching of the reaction pathway likely happens in the 1A1 state of Fe(CO)4. A sub-picosecond time constant of the spin crossover from 1B2 to 3B2 is rationalized by the proposed 1B2 → 1A1 → 3B2 mechanism. Ultrafast ligation of the 1B2 Fe(CO)4 state is significantly faster than the spin-forbidden and diffusion limited ligation process occurring from the 3B2 Fe(CO)4 ground state that has been observed in the previous studies. We propose that the ultrafast ligation occurs via 1B2 → 1A1 → 1A′ Fe(CO)4EtOH pathway and the time scale of the 1A1 Fe(CO)4 state ligation is governed by the solute-solvent collision frequency. Our study emphasizes the importance of understanding the interaction of molecular excited states with the surrounding environment to explain the relaxation pathways of photoexcited metal carbonyls in solution.


Journal of Physical Chemistry B | 2014

Probing the Hofmeister effect with ultrafast core-hole spectroscopy.

Zhong Yin; Ivan Rajkovic; K. Kubicek; W. Quewedo; Annette Pietzsch; Philippe Wernet; A. Föhlisch; Simone Techert

In the current work, X-ray emission spectra of aqueous solutions of different inorganic salts within the Hofmeister series are presented. The results reflect the direct interaction of the ions with the water molecules and therefore, reveal general properties of the salt-water interactions. Within the experimental precision a significant effect of the ions on the water structure has been observed but no ordering according to the structure maker/structure breaker concept could be mirrored in the results indicating that the Hofmeister effect-if existent-may be caused by more complex interactions.


Review of Scientific Instruments | 2010

Development of a multipurpose vacuum chamber for serial optical and diffraction experiments with free electron laser radiation.

Ivan Rajkovic; J. Hallmann; S. Grübel; R. Moré; Wilson Quevedo; Marcel Petri; Simone Techert

In this paper we present a development of a multipurpose vacuum chamber which primal function is to be used in pump/probe experiments with free electron laser (FEL) radiation. The chamber is constructed for serial diffraction and serial spectroscopy allowing a fast exchange of samples during the measurement process. For the fast exchange of samples, liquid jet systems are used. Both applications, utilizing soft x-ray FEL pulses as pump and optical laser pulses as probe and vice versa are documented. Experiments with solid samples as well as the liquid jet samples are presented. When working with liquid jets, a system of automatically refilled liquid traps for capturing liquids has been developed in order to ensure stable vacuum conditions. Differential pumping stages are placed in between the FEL beamline and the experimental chamber so that working pressure in the chamber can be up to four orders of magnitude higher than the pressure in the FEL beamline.


Zeitschrift für Physikalische Chemie | 2015

Ionic solutions probed by resonant inelastic X-ray scattering.

Zhong Yin; Ivan Rajkovic; S. Thekku Veedu; S. Deinert; Dirk Raiser; R. Jain; H. Fukuzawa; S. Wada; Wilson Quevedo; Brian Kennedy; S. Schreck; Annette Pietzsch; Philippe Wernet; K. Ueda; A. Föhlisch; Simone Techert

Abstract X-ray spectroscopy is a powerful tool to study the local charge distribution of chemical systems. Together with the liquid jet it becomes possible to probe chemical systems in their natural environment, the liquid phase. In this work, we present X-ray absorption (XA), X-ray emission (XE) and resonant inelastic X-ray scattering (RIXS) data of pure water and various salt solutions and show the possibilities these methods offer to elucidate the nature of ion-water interaction.


Journal of Applied Physics | 2011

Transient (000)-order attenuation effects in ultrafast transmission electron diffraction

M. Ligges; Ivan Rajkovic; C. Streubühr; Thorsten Brazda; Ping Zhou; O. Posth; C. Hassel; G. Dumpich; Dietrich von der Linde

We discuss the observation of a transient (000)-order attenuation in time-resolved transmission electron diffraction experiments. It is shown that this effect causes a decrease of the diffraction intensity of all higher diffraction orders. This effect is not unique to specific materials as it was observed in thin Au, Ag and Cu films.


Journal of Physics B | 2010

First steps towards probing chemical systems and dynamics with free-electron laser radiation-–case studies at the FLASH facility

Jörg Hallmann; S. Grübel; Ivan Rajkovic; Wilson Quevedo; G. Busse; Mirko Scholz; R. Moré; Marcel Petri; Simone Techert

It is expected that free-electron laser (FEL) radiation with its unique properties will allow real-time tracking of structural changes during chemical reactions. The methods suggested being applied range from x-ray spectroscopy to diffraction. In order to reach this goal, in this work we will present our studies utilizing soft x-ray FEL radiation generated at the FLASH facility. We will present case studies of ultrafast x-ray diffraction on nanocrystalline lamellar assemblies of chemical relevance and heat dissipation studies on polymer foils (upon FLASH excitation) as revealed by ultrafast optical reflectivity. The extension of these studies to characterize in vacuum water jets during their interaction with FEL radiation will be given at the end if this overview. In conclusion, it can be stated that FLASH-FEL radiation can be used for studying chemical processes as long as the pulse duration is smaller than the characteristic time scales of destruction (ionization) and heat dissipation processes.

Collaboration


Dive into the Ivan Rajkovic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wilson Quevedo

Helmholtz-Zentrum Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Föhlisch

Helmholtz-Zentrum Berlin

View shared research outputs
Top Co-Authors

Avatar

Mirko Scholz

Folkwang University of the Arts

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Ligges

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon Schreck

Helmholtz-Zentrum Berlin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge