Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Celeste is active.

Publication


Featured researches published by J. Celeste.


Review of Scientific Instruments | 2006

Development of nuclear diagnostics for the National Ignition Facility (invited)

V. Yu. Glebov; D. D. Meyerhofer; T. C. Sangster; C. Stoeckl; S. Roberts; C. A. Barrera; J. Celeste; Charles Cerjan; Lucile S. Dauffy; David C. Eder; R. L. Griffith; S. W. Haan; B. A. Hammel; S. P. Hatchett; N. Izumi; J. R. Kimbrough; J. A. Koch; O. L. Landen; R. A. Lerche; B. J. MacGowan; M. J. Moran; E. W. Ng; Thomas W. Phillips; P. Song; R. Tommasini; B. K. Young; S. E. Caldwell; Gary P. Grim; S. C. Evans; J. M. Mack

The National Ignition Facility (NIF) will provide up to 1.8MJ of laser energy for imploding inertial confinement fusion (ICF) targets. Ignited NIF targets are expected to produce up to 1019 DT neutrons. This will provide unprecedented opportunities and challenges for the use of nuclear diagnostics in ICF experiments. In 2005, the suite of nuclear-ignition diagnostics for the NIF was defined and they are under development through collaborative efforts at several institutions. This suite includes PROTEX and copper activation for primary yield measurements, a magnetic recoil spectrometer and carbon activation for fuel areal density, neutron time-of-flight detectors for yield and ion temperature, a gamma bang time detector, and neutron imaging systems for primary and downscattered neutrons. An overview of the conceptual design, the developmental status, and recent results of prototype tests on the OMEGA laser will be presented.


Physics of Plasmas | 2012

The velocity campaign for ignition on NIF

D. A. Callahan; N. B. Meezan; S. H. Glenzer; A. J. Mackinnon; L. R. Benedetti; D. K. Bradley; J. Celeste; Peter M. Celliers; S. N. Dixit; T. Döppner; E. G. Dzentitis; S. Glenn; S. W. Haan; C. A. Haynam; Damien G. Hicks; D. E. Hinkel; O. S. Jones; O. L. Landen; Richard A. London; A. G. MacPhee; P. Michel; J. D. Moody; J. E. Ralph; H. F. Robey; M. D. Rosen; M. B. Schneider; D. J. Strozzi; L. J. Suter; R. P. J. Town; K. Widmann

Achieving inertial confinement fusion ignition requires a symmetric, high velocity implosion. Experiments show that we can reach 95 ± 5% of the required velocity by using a 420 TW, 1.6 MJ laser pulse. In addition, experiments with a depleted uranium hohlraum show an increase in capsule performance which suggests an additional 18 ± 5 μm/ns of velocity with uranium hohlraums over gold hohlraums. Combining these two would give 99 ± 5% of the ignition velocity. Experiments show that we have the ability to tune symmetry using crossbeam transfer. We can control the second Legendre mode (P2) by changing the wavelength separation between the inner and outer cones of laser beams. We can control the azimuthal m = 4 asymmetry by changing the wavelength separation between the 23.5 and 30 degree beams on NIF. This paper describes our “first pass” tuning the implosion velocity and shape on the National Ignition Facility laser [Moses et al., Phys. Plasmas, 16, 041006 (2009)].


Review of Scientific Instruments | 2010

The first measurements of soft x-ray flux from ignition scale Hohlraums at the National Ignition Facility using DANTE (invited).

J. L. Kline; K. Widmann; A. Warrick; R.E. Olson; C. A. Thomas; A. S. Moore; L. J. Suter; O. L. Landen; D. A. Callahan; S. Azevedo; J. Liebman; S. H. Glenzer; A. D. Conder; S. Dixit; P. Torres; V. Tran; E. L. Dewald; J. Kamperschroer; L. J. Atherton; R. Beeler; L. V. Berzins; J. Celeste; C. A. Haynam; W. W. Hsing; D. W. Larson; B. J. MacGowan; D. E. Hinkel; D. H. Kalantar; R. L. Kauffman; J. D. Kilkenny

The first 96 and 192 beam vacuum Hohlraum target experiments have been fielded at the National Ignition Facility demonstrating radiation temperatures up to 340 eV and fluxes of 20 TW/sr as viewed by DANTE representing an ∼20 times flux increase over NOVA/Omega scale Hohlraums. The vacuum Hohlraums were irradiated with 2 ns square laser pulses with energies between 150 and 635 kJ. They produced nearly Planckian spectra with about 30±10% more flux than predicted by the preshot radiation hydrodynamic simulations. To validate these results, careful verification of all component calibrations, cable deconvolution, and software analysis routines has been conducted. In addition, a half Hohlraum experiment was conducted using a single 2 ns long axial quad with an irradiance of ∼2×10(15) W/cm(2) for comparison with NIF Early Light experiments completed in 2004. We have also completed a conversion efficiency test using a 128-beam nearly uniformly illuminated gold sphere with intensities kept low (at 1×10(14) W/cm(2) over 5 ns) to avoid sensitivity to modeling uncertainties for nonlocal heat conduction and nonlinear absorption mechanisms, to compare with similar intensity, 3 ns OMEGA sphere results. The 2004 and 2009 NIF half-Hohlraums agreed to 10% in flux, but more importantly, the 2006 OMEGA Au Sphere, the 2009 NIF Au sphere, and the calculated Au conversion efficiency agree to ±5% in flux, which is estimated to be the absolute calibration accuracy of the DANTEs. Hence we conclude that the 30±10% higher than expected radiation fluxes from the 96 and 192 beam vacuum Hohlraums are attributable to differences in physics of the larger Hohlraums.


Review of Scientific Instruments | 2010

Images of the laser entrance hole from the static x-ray imager at NIF

M. B. Schneider; O. S. Jones; N. B. Meezan; J. L. Milovich; R. P. J. Town; S. S. Alvarez; R. G. Beeler; D. K. Bradley; J. Celeste; S. Dixit; M. J. Edwards; M. J. Haugh; D. H. Kalantar; J. L. Kline; G. A. Kyrala; O. L. Landen; B. J. MacGowan; P. Michel; J. D. Moody; S. K. Oberhelman; K. Piston; Michael J. Pivovaroff; L. J. Suter; A. Teruya; C. A. Thomas; Stephen P. Vernon; A. Warrick; K. Widmann; R. D. Wood; B. K. Young

The static x-ray imager at the National Ignition Facility is a pinhole camera using a CCD detector to obtain images of Hohlraum wall x-ray drive illumination patterns seen through the laser entrance hole (LEH). Carefully chosen filters, combined with the CCD response, allow recording images in the x-ray range of 3-5 keV with 60 μm spatial resolution. The routines used to obtain the apparent size of the backlit LEH and the location and intensity of beam spots are discussed and compared to predictions. A new soft x-ray channel centered at 870 eV (near the x-ray peak of a 300 eV temperature ignition Hohlraum) is discussed.


Proceedings of SPIE | 2012

Measuring x-ray burn history with the Streaked Polar Instrumentation for Diagnosing Energetic Radiation (SPIDER) at the National Ignition Facility (NIF)

S. F. Khan; P. M. Bell; D. K. Bradley; Scott Burns; J. Celeste; L. S. Dauffy; Mark J. Eckart; M. A. Gerhard; C. Hagmann; D. I. Headley; J. P. Holder; N. Izumi; M. C. Jones; J. W. Kellogg; Hesham Khater; J. R. Kimbrough; A. G. MacPhee; Y. P. Opachich; N. E. Palmer; R. B. Petre; John L. Porter; Randy T. Shelton; T. L. Thomas; J. Worden

We present a new diagnostic for the National Ignition Facility (NIF) [1,2]. The Streaked Polar Instrumentation for Diagnosing Energetic Radiation (SPIDER) is an x-ray streak camera for use on almost-igniting targets, up to ~1017 neutrons per shot. It measures the x-ray burn history for ignition campaigns with the following requirements: X-Ray Energy 8-30keV, Temporal Resolution 10ps, Absolute Timing Resolution 30ps, Neutron Yield: 1014 to 1017. The features of the design are a heavily shielded instrument enclosure outside the target chamber, remote location of the neutron and EMP sensitive components, a precise laser pulse comb fiducial timing system and fast streaking electronics. SPIDER has been characterized for sweep linearity, dynamic range, temporal and spatial resolution. Preliminary DT implosion data shows the functionality of the instrument and provides an illustration of the method of burn history extraction.


Review of Scientific Instruments | 2010

Hot electron measurements in ignition relevant Hohlraums on the National Ignition Facility

E. L. Dewald; C. A. Thomas; S. L. Hunter; L. Divol; N. B. Meezan; S. H. Glenzer; L. J. Suter; E. Bond; J. L. Kline; J. Celeste; David K. Bradley; P. M. Bell; R. L. Kauffman; J. D. Kilkenny; O. L. Landen

On the National Ignition Facility (NIF), hot electrons generated in laser heated Hohlraums are inferred from the >20 keV bremsstrahlung emission measured with the time integrated FFLEX broadband spectrometer. New high energy (>200 keV) time resolved channels were added to infer the generated >170 keV hot electrons that can cause ignition capsule preheat. First hot electron measurements in near ignition scaled Hohlraums heated by 96-192 NIF laser beams are presented.


Review of Scientific Instruments | 2004

Filter-fluorescer diagnostic system for the National Ignition Facility

J. W. McDonald; R. L. Kauffman; J. Celeste; M. Rhodes; F. D. Lee; L. J. Suter; A. Lee; J. M. Foster; G. Slark

An early filter-fluorescer diagnostic system is being fielded at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) to measure the amount of hard x rays (20<hν<150 keV) generated in laser fusion experiments. From these measurements we hope to quantify the number of hot electrons produced in laser fusion experiments. The measurement of hot electron production is important for ignition experiments because these electrons can preheat the fuel capsule. Hot electrons can also be employed in experimentation by preheating hydrodynamic packages or by driving plasmas out of equilibrium. The experimental apparatus, data collection, analysis and calibration issues are discussed. Expected data signal levels are predicted and discussed.


Physics of Plasmas | 2006

Hard x-ray and hot electron environment in vacuum hohlraums at the National Ignition Facility

J. W. McDonald; L. J. Suter; O. L. Landen; J.M. Foster; J. Celeste; J. P. Holder; E. L. Dewald; M. B. Schneider; D. E. Hinkel; R. L. Kauffman; L. J. Atherton; R. E. Bonanno; S. Dixit; David C. Eder; C. A. Haynam; D. H. Kalantar; Alice Koniges; F. D. Lee; B. J. MacGowan; Kenneth R. Manes; D. H. Munro; J. R. Murray; M. J. Shaw; R. M. Stevenson; T. Parham; B. Van Wonterghem; R. J. Wallace; Paul J. Wegner; Pamela K. Whitman; B. K. Young

Time resolved hard x-ray images (hv>9keV) and time integrated hard x-ray spectra (hv=18–150keV) from vacuum hohlraums irradiated with four 351nm wavelength National Ignition Facility [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technol. 26, 755 (1994)] laser beams are presented as a function of hohlraum size, laser power, and duration. The hard x-ray images and spectra provide insight into the time evolution of the hohlraum plasma filling and the production of hot electrons. The fraction of laser energy detected as hot electrons (Fhot) shows a correlation with laser intensity and with an empirical hohlraum plasma filling model. In addition, the significance of Au K-alpha emission and Au K-shell reabsorption observed in some of the bremsstrahlung dominated spectra is discussed.


Physics of Plasmas | 2005

Three-Dimensional Hydrodynamic Experiments on the National Ignition Facility

B. E. Blue; H. F. Robey; S. G. Glendinning; Matthew J. Bono; Scott C. Burkhart; J. Celeste; R. F. Coker; R. Costa; S. Dixit; J. M. Foster; J. F. Hansen; C. A. Haynam; Mark Hermann; J. P. Holder; W. W. Hsing; D. H. Kalantar; N. E. Lanier; D. A. Latray; H. Louis; B. J. MacGowan; G. R. Maggelssen; Christopher D. Marshall; E. I. Moses; A. J. Nikitin; D. W. O'Brien; T.S. Perry; M. W. Poole; V. V. Rekow; P.A. Rosen; M. B. Schneider

The production of supersonic jets of material via the interaction of a strong shock wave with a spatially localized density perturbation is a common feature of inertial confinement fusion and astrophysics. The behavior of two-dimensional (2D) supersonic jets has previously been investigated in detail [J. M. Foster et. al, Phys. Plasmas 9, 2251 (2002)]. In three-dimensions (3D), however, there are new aspects to the behavior of supersonic jets in compressible media. In this paper, the commissioning activities on the National Ignition Facility (NIF) [J. A. Paisner et al., Laser Focus World 30, 75 (1994)] to enable hydrodynamic experiments will be presented as well as the results from the first series of hydrodynamic experiments. In these experiments, two of the first four beams of NIF are used to drive a 40 Mbar shock wave into millimeter scale aluminum targets backed by 100 mg/cc carbon aerogel foam. The remaining beams are delayed in time and are used to provide a point-projection x-ray backlighter source for diagnosing the three-dimensional structure of the jet evolution resulting from a variety of 2D and 3D features. Comparisons between data and simulations using several codes will be presented.


Review of Scientific Instruments | 2004

Implementation of a near backscattering imaging system on the National Ignition Facility

A. J. Mackinnon; T. McCarville; K. Piston; C. Niemann; G. Jones; I. Reinbachs; R. Costa; J. Celeste; G. Holtmeier; R. L. Griffith; R. K. Kirkwood; B. J. MacGowan; S. H. Glenzer; M. R. Latta

A near backscattering imaging diagnostic system is being implemented on the first quad of beams on the National Ignition Facility. This diagnostic images diffusing scatter plates, placed around the final focus lenses on the National Ignition Facility target chamber, to quantitatively measure the fraction of light backscattered outside of the focusing cone angle of incident laser beam. A wide-angle imaging system relays an image of light scattered outside the lens onto a gated charge coupled device camera, providing 3 mm resolution over a 2 m field of view. To account for changes of the system throughput due to exposure to target debris the system will be routinely calibrated in situ at 532 and 355 nm using a dedicated pulsed laser source.

Collaboration


Dive into the J. Celeste's collaboration.

Top Co-Authors

Avatar

J. P. Holder

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

B. J. MacGowan

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. H. Kalantar

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

O. L. Landen

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

P. M. Bell

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. H. Glenzer

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

C. A. Haynam

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. B. Schneider

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. E. Hinkel

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

E. L. Dewald

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge