Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. P. Holder is active.

Publication


Featured researches published by J. P. Holder.


Review of Scientific Instruments | 2004

Dante soft x-ray power diagnostic for National Ignition Facility

E. L. Dewald; K. M. Campbell; R. E. Turner; J. P. Holder; O. L. Landen; S. H. Glenzer; R. L. Kauffman; L. J. Suter; M. Landon; M. Rhodes; D. Lee

Soft x-ray power diagnostics are essential for measuring the total x-ray flux, radiation temperature, conversion efficiency, and albedo that define the energetics in indirect and direct drive, as well as other types of high temperature laser plasma experiments. A key diagnostic for absolute radiation flux and radiation temperature in hohlraum experiments is the Dante broadband soft x-ray spectrometer. For the extended range of x-ray fluxes predicted for National Ignition Facility (NIF) compared to Omega or Nova hohlraums, the Dante spectrometer for NIF will include more high energy (<2 keV) edge filter band-pass channels and access to an increased dynamic range using grids and signal division. This will allow measurements of radiation fluxes of between 0.01 to 100 TW/sr, for hohlraum radiation temperatures between 50 eV and 1 keV. The NIF Dante will include a central four-channel imaging line-of-sight to verify the source size, alignment as well as checking for any radiation contributions from unconverted...


Review of Scientific Instruments | 2006

Gated x-ray detector for the National Ignition Facility

John A. Oertel; Robert Aragonez; Tom Archuleta; Cris W. Barnes; Larry J. Casper; Valerie E. Fatherley; Todd Heinrichs; Robert S. King; Doug Landers; F. E. Lopez; P. G. Sanchez; George Sandoval; L. S. Schrank; Peter J. Walsh; P. M. Bell; Matt Brown; R. Costa; J. P. Holder; Sam Montelongo; Neal R. Pederson

Two new gated x-ray imaging cameras have recently been designed, constructed, and delivered to the National Ignition Facility in Livermore, CA. These gated x-Ray detectors are each designed to fit within an aluminum airbox with a large capacity cooling plane and are fitted with an array of environmental housekeeping sensors. These instruments are significantly different from earlier generations of gated x-ray images due, in part, to an innovative impedance matching scheme, advanced phosphor screens, pulsed phosphor circuits, precision assembly fixturing, unique system monitoring, and complete remote computer control. Preliminary characterization has shown repeatable uniformity between imaging strips, improved spatial resolution, and no detectable impedance reflections.


Physics of Plasmas | 2011

Symmetry tuning for ignition capsules via the symcap techniquea)

G. A. Kyrala; J. L. Kline; S. Dixit; S. H. Glenzer; D. H. Kalantar; D. K. Bradley; N. Izumi; N. B. Meezan; O. L. Landen; D. A. Callahan; S. V. Weber; J. P. Holder; S. Glenn; M. J. Edwards; J. A. Koch; L. J. Suter; S. W. Haan; R. P. J. Town; P. Michel; O. S. Jones; S. H. Langer; J. D. Moody; E. L. Dewald; T. Ma; J. E. Ralph; Alex V. Hamza; E. G. Dzenitis; J. D. Kilkenny

Symmetry of an implosion is crucial to get ignition successfully. Several methods of control and measurement of symmetry have been applied on many laser systems with mm size hohlraums and ns pulses. On the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] we have large hohlraums of cm scale, long drive pulses of 10 s of ns, and a large number of beams with the option to tune their wavelengths. Here we discuss how we used the x-ray self-emission from imploding surrogates to ignition capsules (symcaps) to measure the symmetry of the implosion. We show that symcaps are good surrogates for low order symmetry, though having lower sensitivity to distortions than ignition capsules. We demonstrate the ability to transfer energy between laser beams in a gas-filled hohlraum using wavelength tuning, successfully tuning the lowest order symmetry of the symcaps in different size hohlraums at different laser energies within the specification established by calculations for successful ignition.


Physics of Plasmas | 2012

Implosion dynamics measurements at the National Ignition Facility

Damien G. Hicks; N. B. Meezan; E. L. Dewald; A. J. Mackinnon; R.E. Olson; D. A. Callahan; T. Döppner; L. R. Benedetti; D. K. Bradley; Peter M. Celliers; D. S. Clark; P. Di Nicola; S. N. Dixit; E. G. Dzenitis; J. E. Eggert; D. R. Farley; J. A. Frenje; S. Glenn; S. H. Glenzer; Alex V. Hamza; R. F. Heeter; J. P. Holder; N. Izumi; D. H. Kalantar; S. F. Khan; J. L. Kline; J. J. Kroll; G. A. Kyrala; T. Ma; A. G. MacPhee

Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1–1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsu...


Review of Scientific Instruments | 2010

Measuring symmetry of implosions in cryogenic Hohlraums at the NIF using gated x-ray detectors (invited)

George A. Kyrala; S. Dixit; S. H. Glenzer; D. H. Kalantar; David K. Bradley; N. Izumi; N. B. Meezan; O. L. Landen; D. A. Callahan; S. V. Weber; J. P. Holder; S. Glenn; M. J. Edwards; P. M. Bell; J. R. Kimbrough; J. A. Koch; R. Prasad; L. J. Suter; J. L. Kline; J. D. Kilkenny

Ignition of imploding inertial confinement capsules requires, among other things, controlling the symmetry with high accuracy and fidelity. We have used gated x-ray imaging, with 10 μm and 70 ps resolution, to detect the x-ray emission from the imploded core of symmetry capsules at the National Ignition Facility. The measurements are used to characterize the time dependent symmetry and the x-ray bang time of the implosion from two orthogonal directions. These measurements were one of the primary diagnostics used to tune the parameters of the laser and Hohlraum to vary the symmetry and x-ray bang time of the implosion of cryogenically cooled ignition scale deuterium/helium filled plastic capsules. Here, we will report on the successful measurements performed with up to 1.2 MJ of laser energy in a fully integrated cryogenics gas-filled ignition-scale Hohlraum and capsule illuminated with 192 smoothed laser beams. We will describe the technique, the accuracy of the technique, and the results of the variation in symmetry with tuning parameters, and explain how that set was used to predictably tune the implosion symmetry as the laser energy, the laser cone wavelength separation, and the Hohlraum size were increased to ignition scales. We will also describe how to apply that technique to cryogenically layered tritium-hydrogen-deuterium capsules.


Review of Scientific Instruments | 2010

A hardened gated x-ray imaging diagnostic for inertial confinement fusion experiments at the National Ignition Facility.

S. Glenn; J. A. Koch; D. K. Bradley; N. Izumi; P. M. Bell; J. P. Holder; G. F. Stone; R. Prasad; A. J. Mackinnon; P. T. Springer; O. L. Landen; G. A. Kyrala

A gated x-ray detector is under development for use at the National Ignition Facility that is intended to provide plasma emission images in the presence of neutron yields up to 10(15) expected during inertial confinement fusion experiments with layered cryogenic targets. These images are expected to provide valuable time-resolved measurements of core and fuel symmetries. Additional capabilities of this instrument will include the ability to make spatially resolved electron temperature measurements. A description of this instrument and its operation is given with emphasis on features that differentiate it from previous designs.


Proceedings of SPIE | 2012

Measuring x-ray burn history with the Streaked Polar Instrumentation for Diagnosing Energetic Radiation (SPIDER) at the National Ignition Facility (NIF)

S. F. Khan; P. M. Bell; D. K. Bradley; Scott Burns; J. Celeste; L. S. Dauffy; Mark J. Eckart; M. A. Gerhard; C. Hagmann; D. I. Headley; J. P. Holder; N. Izumi; M. C. Jones; J. W. Kellogg; Hesham Khater; J. R. Kimbrough; A. G. MacPhee; Y. P. Opachich; N. E. Palmer; R. B. Petre; John L. Porter; Randy T. Shelton; T. L. Thomas; J. Worden

We present a new diagnostic for the National Ignition Facility (NIF) [1,2]. The Streaked Polar Instrumentation for Diagnosing Energetic Radiation (SPIDER) is an x-ray streak camera for use on almost-igniting targets, up to ~1017 neutrons per shot. It measures the x-ray burn history for ignition campaigns with the following requirements: X-Ray Energy 8-30keV, Temporal Resolution 10ps, Absolute Timing Resolution 30ps, Neutron Yield: 1014 to 1017. The features of the design are a heavily shielded instrument enclosure outside the target chamber, remote location of the neutron and EMP sensitive components, a precise laser pulse comb fiducial timing system and fast streaking electronics. SPIDER has been characterized for sweep linearity, dynamic range, temporal and spatial resolution. Preliminary DT implosion data shows the functionality of the instrument and provides an illustration of the method of burn history extraction.


Review of Scientific Instruments | 2002

Extraction of highly charged ions from the electron beam ion trap at LBNL for applications in surface analysis and materials science

T. Schenkel; A. Persaud; A. Kraemer; J. W. McDonald; J. P. Holder; Alex V. Hamza; D. Schneider

We describe results from highly ion extraction experiments at the Electron Beam Ion Trap (EBIT) facility which is now operated at Lawrence Berkeley National Laboratory after transfer from Lawrence Livermore National Laboratory. Requirements on ion source performance for the application of highly charged ions (e. g. Xe{sup 44+}) in surface analysis and materials science are discussed.


Review of Scientific Instruments | 2012

High performance imaging streak camera for the National Ignition Facility

Y. P. Opachich; D. H. Kalantar; A. G. MacPhee; J. P. Holder; J. R. Kimbrough; P. M. Bell; D. K. Bradley; B. Hatch; G. Brienza-Larsen; C. Brown; C. G. Brown; D. Browning; M. Charest; E. L. Dewald; M. Griffin; B. Guidry; M. J. Haugh; D. G. Hicks; D. Homoelle; J. J. Lee; A. J. Mackinnon; A. Mead; N. E. Palmer; B. H. Perfect; J. S. Ross; C. Silbernagel; O. L. Landen

An x-ray streak camera platform has been characterized and implemented for use at the National Ignition Facility. The camera has been modified to meet the experiment requirements of the National Ignition Campaign and to perform reliably in conditions that produce high electromagnetic interference. A train of temporal ultra-violet timing markers has been added to the diagnostic in order to calibrate the temporal axis of the instrument and the detector efficiency of the streak camera was improved by using a CsI photocathode. The performance of the streak camera has been characterized and is summarized in this paper. The detector efficiency and cathode measurements are also presented.


Physics of Plasmas | 2006

Hard x-ray and hot electron environment in vacuum hohlraums at the National Ignition Facility

J. W. McDonald; L. J. Suter; O. L. Landen; J.M. Foster; J. Celeste; J. P. Holder; E. L. Dewald; M. B. Schneider; D. E. Hinkel; R. L. Kauffman; L. J. Atherton; R. E. Bonanno; S. Dixit; David C. Eder; C. A. Haynam; D. H. Kalantar; Alice Koniges; F. D. Lee; B. J. MacGowan; Kenneth R. Manes; D. H. Munro; J. R. Murray; M. J. Shaw; R. M. Stevenson; T. Parham; B. Van Wonterghem; R. J. Wallace; Paul J. Wegner; Pamela K. Whitman; B. K. Young

Time resolved hard x-ray images (hv>9keV) and time integrated hard x-ray spectra (hv=18–150keV) from vacuum hohlraums irradiated with four 351nm wavelength National Ignition Facility [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technol. 26, 755 (1994)] laser beams are presented as a function of hohlraum size, laser power, and duration. The hard x-ray images and spectra provide insight into the time evolution of the hohlraum plasma filling and the production of hot electrons. The fraction of laser energy detected as hot electrons (Fhot) shows a correlation with laser intensity and with an empirical hohlraum plasma filling model. In addition, the significance of Au K-alpha emission and Au K-shell reabsorption observed in some of the bremsstrahlung dominated spectra is discussed.

Collaboration


Dive into the J. P. Holder's collaboration.

Top Co-Authors

Avatar

P. M. Bell

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. K. Bradley

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

O. L. Landen

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. H. Kalantar

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

N. Izumi

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

E. L. Dewald

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. Celeste

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. H. Glenzer

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. Hargrove

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. B. Schneider

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge