Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. M. Di Nicola is active.

Publication


Featured researches published by J. M. Di Nicola.


Physics of Plasmas | 2013

Hohlraum energetics scaling to 520 TW on the National Ignition Facility

J. L. Kline; D. A. Callahan; S. H. Glenzer; N. B. Meezan; J. D. Moody; D. E. Hinkel; O. S. Jones; A. J. Mackinnon; R. Bennedetti; R. L. Berger; D. K. Bradley; E. L. Dewald; I. Bass; C. Bennett; M. W. Bowers; G. K. Brunton; J. Bude; S. C. Burkhart; A. Condor; J. M. Di Nicola; P. Di Nicola; S. N. Dixit; T. Doeppner; E. G. Dzenitis; G. V. Erbert; J. Folta; G. P. Grim; S. Glenn; Alex V. Hamza; S. W. Haan

Indirect drive experiments have now been carried out with laser powers and energies up to 520 TW and 1.9 MJ. These experiments show that the energy coupling to the target is nearly constant at 84% ± 3% over a wide range of laser parameters from 350 to 520 TW and 1.2 to 1.9 MJ. Experiments at 520 TW with depleted uranium hohlraums achieve radiation temperatures of ∼330 ± 4 eV, enough to drive capsules 20 μm thicker than the ignition point design to velocities near the ignition goal of 370 km/s. A series of three symcap implosion experiments with nearly identical target, laser, and diagnostics configurations show the symmetry and drive are reproducible at the level of ±8.5% absolute and ±2% relative, respectively.


Fusion Science and Technology | 2016

Description of the NIF Laser

M. Spaeth; K. R. Manes; D. H. Kalantar; P. Miller; J. Heebner; E. S. Bliss; D. R. Spec; T. Parham; Pamela K. Whitman; Paul J. Wegner; P. A. Baisden; J. Menapace; M. W. Bowers; S. J. Cohen; T. Suratwala; J. M. Di Nicola; M. A. Newton; J. J. Adams; J. B. Trenholme; R. G. Finucane; R. E. Bonanno; D. C. Rardin; P. A. Arnold; S. N. Dixit; G. V. Erbert; A. C. Erlandson; J. Fair; E. Feigenbaum; W. H. Gourdin; R. Hawley

Abstract The possibility of imploding small capsules to produce mini-fusion explosions was explored soon after the first thermonuclear explosions in the early 1950s. Various technologies have been pursued to achieve the focused power and energy required for laboratory-scale fusion. Each technology has its own challenges. For example, electron and ion beams can deliver the large amounts of energy but must contend with Coulomb repulsion forces that make focusing these beams a daunting challenge. The demonstration of the first laser in 1960 provided a new option. Energy from laser beams can be focused and deposited within a small volume; the challenge became whether a practical laser system can be constructed that delivers the power and energy required while meeting all other demands for achieving a high-density, symmetric implosion. The National Ignition Facility (NIF) is the laser designed and built to meet the challenges for study of high-energy-density physics and inertial confinement fusion (ICF) implosions. This paper describes the architecture, systems, and subsystems of NIF. It describes how they partner with each other to meet these new, complex demands and describes how laser science and technology were woven together to bring NIF into reality.


Fusion Science and Technology | 2016

Damage mechanisms avoided or managed for NIF large optics

Kenneth R. Manes; M. Spaeth; J. J. Adams; M. W. Bowers; J. D. Bude; C. W. Carr; A. D. Conder; D. A. Cross; S. G. Demos; J. M. Di Nicola; S. Dixit; Eyal Feigenbaum; R. G. Finucane; Gabe Guss; Mark A. Henesian; J. Honig; D. H. Kalantar; L. M. Kegelmeyer; Z. M. Liao; B. J. MacGowan; M. J. Matthews; K. P. McCandless; N. C. Mehta; Philip E. Miller; Raluca A. Negres; M. A. Norton; Mike C. Nostrand; Charles D. Orth; Richard A. Sacks; M. J. Shaw

Abstract After every other failure mode has been considered, in the end, the high-performance limit of all lasers is set by optical damage. The demands of inertial confinement fusion (ICF) pushed lasers designed as ICF drivers into this limit from their very earliest days. The first ICF lasers were small, and their pulses were short. Their goal was to provide as much power to the target as possible. Typically, they faced damage due to high intensity on their optics. As requests for higher laser energy, longer pulse lengths, and better symmetry appeared, new kinds of damage also emerged, some of them anticipated and others unexpected. This paper will discuss the various types of damage to large optics that had to be considered, avoided to the extent possible, or otherwise managed as the National Ignition Facility (NIF) laser was designed, fabricated, and brought into operation. It has been possible for NIF to meet its requirements because of the experience gained in previous ICF systems and because NIF designers have continued to be able to avoid or manage new damage situations as they have appeared.


Fusion Science and Technology | 2016

National Ignition Facility Laser System Performance

M. Spaeth; Kenneth R. Manes; M. W. Bowers; Peter M. Celliers; J. M. Di Nicola; P. Di Nicola; S. Dixit; Gaylen V. Erbert; John E. Heebner; D. H. Kalantar; O. L. Landen; B. J. MacGowan; B. Van Wonterghem; Paul J. Wegner; C. Widmayer; Steven T. Yang

Abstract The National Ignition Facility (NIF) laser is the culmination of more than 40 years of work at Lawrence Livermore National Laboratory dedicated to the delivery of laser systems capable of driving experiments for the study of high-energy-density physics. Although NIF was designed to support a number of missions, it was clear from the beginning that its biggest challenge was to meet the requirements for pursuit of inertial confinement fusion. Meeting the Project Completion Criteria for NIF in 2009 and for the National Ignition Campaign (NIC) in 2012 included meeting the NIF Functional Requirements and Primary Criteria that were established for the project in 1994. During NIC and as NIF transitioned to a user facility, its goals were expanded to include requirements defined by the broader user community as well as by laser system designers and operators.


Proceedings of SPIE | 2015

The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output

J. M. Di Nicola; Steven T. Yang; C. D. Boley; John K. Crane; John E. Heebner; T. Spinka; P. A. Arnold; C. P. J. Barty; M. W. Bowers; Tracy Budge; Kim Christensen; Jay W. Dawson; Gaylen V. Erbert; Eyal Feigenbaum; Gabe Guss; C. Haefner; Mark Hermann; Doug Homoelle; J. Jarboe; Janice K. Lawson; Roger Lowe-Webb; K. P. McCandless; Brent McHale; L. J. Pelz; P. P. Pham; Matthew A. Prantil; M. Rehak; Matthew Rever; Michael C. Rushford; Richard A. Sacks

The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is the first of a kind megajoule-class laser with 192 beams capable of delivering over 1.8 MJ and 500TW of 351nm light [1], [2]. It has been commissioned and operated since 2009 to support a wide range of missions including the study of inertial confinement fusion, high energy density physics, material science, and laboratory astrophysics. In order to advance our understanding, and enable short-pulse multi-frame radiographic experiments of dense cores of cold material, the generation of very hard x-rays above 50 keV is necessary. X-rays with such characteristics can be efficiently generated with high intensity laser pulses above 1017 W/cm² [3]. The Advanced Radiographic Capability (ARC) [4] which is currently being commissioned on the NIF will provide eight, 1 ps to 50 ps, adjustable pulses with up to 1.7 kJ each to create x-ray point sources enabling dynamic, multi-frame x-ray backlighting. This paper will provide an overview of the ARC system and report on the laser performance tests conducted with a stretched-pulse up to the main laser output and their comparison with the results of our laser propagation codes.


Proceedings of SPIE | 2012

Beam and target alignment at the National Ignition Facility using the Target Alignment Sensor (TAS)

P. Di Nicola; D. H. Kalantar; T. McCarville; J. Klingmann; S. Alvarez; Roger Lowe-Webb; Janice K. Lawson; P. S. Datte; P. Danforth; M. B. Schneider; J. M. Di Nicola; Jessie Jackson; Charles D. Orth; Steve G. Azevedo; R. Tommasini; Anastacia M. Manuel; R. Wallace

The requirements for beam and target alignment for successful ignition experiments on the National Ignition Facility (NIF) are stringent: the average of beams to the target must be within 25 μm. Beam and target alignment are achieved with the Target Alignment Sensor (TAS). The TAS is a precision optical device that is inserted into target chamber center to facilitate both beam and target alignment. It incorporates two camera views (upper/lower and side) mounted on each of two stage assemblies (jaws) to view and align the target. It also incorporates a large mirror on each of the two assemblies to reflect the alignment beams onto the upper/lower cameras for beam alignment. The TAS is located in the chamber using reference features by viewing it with two external telescope views. The two jaws are adjusted in elevation to match the desired beam and target alignment locations. For some shot setups, a sequence of TAS positions is required to achieve the full setup and alignment. In this paper we describe the TAS, the characterization of the TAS coordinates for beam and target alignment, and summarize pointing shots that demonstrate the accuracy of beam-target alignment.


Physics of Plasmas | 2017

High-energy (>70 keV) x-ray conversion efficiency measurement on the ARC laser at the National Ignition Facility

H. Chen; Mark Hermann; D. H. Kalantar; D. Martinez; P. Di Nicola; R. Tommasini; O. L. Landen; D. Alessi; M. W. Bowers; D. Browning; G. Brunton; Tracy Budge; John K. Crane; J. M. Di Nicola; T. Döppner; S. Dixit; Gaylen V. Erbert; B. Fishler; J. Halpin; M. Hamamoto; John E. Heebner; Vincent J. Hernandez; M. Hohenberger; Doug Homoelle; J. Honig; W. W. Hsing; N. Izumi; S. F. Khan; K. N. LaFortune; Janice K. Lawson

The Advanced Radiographic Capability (ARC) laser system at the National Ignition Facility (NIF) is designed to ultimately provide eight beamlets with a pulse duration adjustable from 1 to 30 ps, and energies up to 1.5 kJ per beamlet. Currently, four beamlets have been commissioned. In the first set of 6 commissioning target experiments, the individual beamlets were fired onto gold foil targets with energy up to 1 kJ per beamlet at 20–30 ps pulse length. The x-ray energy distribution and pulse duration were measured, yielding energy conversion efficiencies of 4–9 × 10−4 for x-rays with energies greater than 70 keV. With greater than 3 J of such x-rays, ARC provides a high-precision x-ray backlighting capability for upcoming inertial confinement fusion and high-energy-density physics experiments on NIF.


Physics of Plasmas | 2018

Wavelength-detuning cross-beam energy transfer mitigation scheme for direct drive: Modeling and evidence from National Ignition Facility implosions

J.A. Marozas; M. Hohenberger; M. J. Rosenberg; D. P. Turnbull; T.J.B. Collins; P. B. Radha; P.W. McKenty; Jonathan D. Zuegel; F. J. Marshall; S.P. Regan; T. C. Sangster; W. Seka; E. M. Campbell; V.N. Goncharov; M. W. Bowers; J. M. Di Nicola; G. Erbert; B. J. MacGowan; L. J. Pelz; J. D. Moody; Steven T. Yang

Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces laser-energy absorption for direct-drive inertial confinement fusion. Consequently, ablation pressure and implosion velocity suffer from the decreased absorption, reducing target performance in both symmetric and polar direct drive. Additionally, CBET alters the time-resolved scattered-light spectra and redistributes absorbed and scattered-light–changing shell morphology and low-mode drive symmetry. Mitigating CBET is demonstrated in inertial confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3 A UV) of the interacting beams. In polar direct drive, wavelength detuning was shown to increase the equatorial region velocity experimentally by 16% and to alter the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation–hydrodynamic simulations that indicate a 10% increase in the average ablation pressure. These results indicate that wavelength detuning successfully mitigates CBET. Simulations predict that optimized phase plates and wavelength-detuning CBET mitigation utilizing the three-legged beam layout of the OMEGA Laser System significantly increase absorption and achieve >100-Gbar hot-spot pressures in symmetric direct drive.Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces laser-energy absorption for direct-drive inertial confinement fusion. Consequently, ablation pressure and implosion velocity suffer from the decreased absorption, reducing target performance in both symmetric and polar direct drive. Additionally, CBET alters the time-resolved scattered-light spectra and redistributes absorbed and scattered-light–changing shell morphology and low-mode drive symmetry. Mitigating CBET is demonstrated in inertial confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3 A UV) of the interacting beams. In polar direct drive, wavelength detuning was shown to increase the equatorial region velocity experimentally by 16% and to alter the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation–hydrodynamic simulations that indicate a 10% i...


Physics of Plasmas | 2017

Short pulse, high resolution, backlighters for point projection high-energy radiography at the National Ignition Facility

R. Tommasini; C. Bailey; D. K. Bradley; M. W. Bowers; H. Chen; J. M. Di Nicola; P. Di Nicola; G. Gururangan; G. Hall; C. M. Hardy; D. Hargrove; Mark Hermann; M. Hohenberger; J. P. Holder; W. W. Hsing; N. Izumi; D. H. Kalantar; S. F. Khan; J. J. Kroll; O. L. Landen; Janice K. Lawson; D. Martinez; N. Masters; J. R. Nafziger; S. R. Nagel; A. Nikroo; J. Okui; D. Palmer; R. Sigurdsson; S. Vonhof

High-resolution, high-energy X-ray backlighters are very active area of research for radiography experiments at the National Ignition Facility (NIF) [Miller et al., Nucl. Fusion 44, S228 (2004)], in particular those aiming at obtaining Compton-scattering produced radiographs from the cold, dense fuel surrounding the hot spot. We report on experiments to generate and characterize point-projection-geometry backlighters using short pulses from the advanced radiographic capability (ARC) [Crane et al., J. Phys. 244, 032003 (2010); Di Nicola et al., Proc. SPIE 2015, 93450I-12], at the NIF, focused on Au micro-wires. We show the first hard X-ray radiographs, at photon energies exceeding 60 keV, of static objects obtained with 30 ps-long ARC laser pulses, and the measurements of strength of the X-ray emission, the pulse duration and the source size of the Au micro-wire backlighters. For the latter, a novel technique has been developed and successfully applied.


Proceedings of SPIE | 2013

Simulations of the propagation of multiple-FM smoothing by spectral dispersion on OMEGA EP

J. H. Kelly; A. Shvydky; J.A. Marozas; M. J. Guardalben; B.E. Kruschwitz; L. J. Waxer; Christophe Dorrer; E. M. Hill; Andrey V. Okishev; J. M. Di Nicola

A one-dimensional (1-D) smoothing by spectral dispersion (SSD) system for smoothing focal-spot nonuniformities using multiple modulation frequencies has been commissioned on one long-pulse beamline of OMEGA EP, the first use of such a system in a high-energy laser. Frequency modulation (FM) to amplitude modulation (AM) conversion in the infrared (IR) output, frequency conversion, and final optics affected the accumulation of B-integral in that beamline. Modeling of this FM-to-AM conversion using the code Miró [Morice, O., “Miró: Complete modeling and software for pulse amplification and propagation in high-power laser systems,” Opt. Eng. 42(6), 1530−1541 (2003).] was used as input to set the beamline performance limits for picket (short) pulses with multi-FM SSD applied. This article first describes that modeling. The 1-D SSD analytical model of Chuang [Chuang, Y.-H., “Amplification of broad-bandwidth phase-modulated laser counterpropagating light waves in homogeneous plasma,” Ph.D. thesis, University of Rochester (September 1991).] is first extended to the case of multiple modulators and then used to benchmark Miró simulations. Comparison is also made to an alternative analytic model developed by Hocquet et al. [Hocquet, S., Penninckx, D., Bordenave, E., Gouédard, C. and Jaouën, Y., “FM-to-AM conversion in high-power lasers,” Appl. Opt. 47(18), 3338−3349 (2008).] With the confidence engendered by this benchmarking, Miró results for multi-FM SSD applied on OMEGA EP are then presented. The relevant output section(s) of the OMEGA EP Laser System are described. The additional B-integral in OMEGA EP IR components upstream of the frequency converters due to AM is modeled. The importance of locating the image of the SSD dispersion grating at the frequency converters is demonstrated. Finally, since frequency conversion is not performed in OMEGA EP’s target chamber, the additional AM due to propagation to the target chamber’s vacuum window is modeled.

Collaboration


Dive into the J. M. Di Nicola's collaboration.

Top Co-Authors

Avatar

M. W. Bowers

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. H. Kalantar

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

John E. Heebner

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

P. Di Nicola

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. Dixit

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

B. J. MacGowan

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Charles D. Orth

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Eyal Feigenbaum

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gaylen V. Erbert

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Janice K. Lawson

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge