P. Di Nicola
Lawrence Livermore National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by P. Di Nicola.
Physics of Plasmas | 2012
Damien G. Hicks; N. B. Meezan; E. L. Dewald; A. J. Mackinnon; R.E. Olson; D. A. Callahan; T. Döppner; L. R. Benedetti; D. K. Bradley; Peter M. Celliers; D. S. Clark; P. Di Nicola; S. N. Dixit; E. G. Dzenitis; J. E. Eggert; D. R. Farley; J. A. Frenje; S. Glenn; S. H. Glenzer; Alex V. Hamza; R. F. Heeter; J. P. Holder; N. Izumi; D. H. Kalantar; S. F. Khan; J. L. Kline; J. J. Kroll; G. A. Kyrala; T. Ma; A. G. MacPhee
Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1–1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsu...
Applied Optics | 2011
Scott C. Burkhart; Erlan S. Bliss; P. Di Nicola; D. H. Kalantar; Roger Lowe-Webb; T. McCarville; D. Nelson; Thad Salmon; T. Schindler; J. Villanueva; Karl Wilhelmsen
The National Ignition Facility (NIF) is the worlds largest optical instrument, comprising 192 37 cm square beams, each generating up to 9.6 kJ of 351 nm laser light in a 20 ns beam precisely tailored in time and spectrum. The Facility houses a massive (10 m diameter) target chamber within which the beams converge onto an ∼1 cm size target for the purpose of creating the conditions needed for deuterium/tritium nuclear fusion in a laboratory setting. A formidable challenge was building NIF to the precise requirements for beam propagation, commissioning the beam lines, and engineering systems to reliably and safely align 192 beams within the confines of a multihour shot cycle. Designing the facility to minimize drift and vibration, placing the optical components in their design locations, commissioning beam alignment, and performing precise system alignment are the key alignment accomplishments over the decade of work described herein. The design and positioning phases placed more than 3000 large (2.5 m×2 m×1 m) line-replaceable optics assemblies to within ±1 mm of design requirement. The commissioning and alignment phases validated clear apertures (no clipping) for all beam lines, and demonstrated automated laser alignment within 10 min and alignment to target chamber center within 44 min. Pointing validation system shots to flat gold-plated x-ray emitting targets showed NIF met its design requirement of ±50 μm rms beam pointing to target chamber. Finally, this paper describes the major alignment challenges faced by the NIF Project from inception to present, and how these challenges were met and solved by the NIF design and commissioning teams.
Physics of Plasmas | 2013
J. L. Kline; D. A. Callahan; S. H. Glenzer; N. B. Meezan; J. D. Moody; D. E. Hinkel; O. S. Jones; A. J. Mackinnon; R. Bennedetti; R. L. Berger; D. K. Bradley; E. L. Dewald; I. Bass; C. Bennett; M. W. Bowers; G. K. Brunton; J. Bude; S. C. Burkhart; A. Condor; J. M. Di Nicola; P. Di Nicola; S. N. Dixit; T. Doeppner; E. G. Dzenitis; G. V. Erbert; J. Folta; G. P. Grim; S. Glenn; Alex V. Hamza; S. W. Haan
Indirect drive experiments have now been carried out with laser powers and energies up to 520 TW and 1.9 MJ. These experiments show that the energy coupling to the target is nearly constant at 84% ± 3% over a wide range of laser parameters from 350 to 520 TW and 1.2 to 1.9 MJ. Experiments at 520 TW with depleted uranium hohlraums achieve radiation temperatures of ∼330 ± 4 eV, enough to drive capsules 20 μm thicker than the ignition point design to velocities near the ignition goal of 370 km/s. A series of three symcap implosion experiments with nearly identical target, laser, and diagnostics configurations show the symmetry and drive are reproducible at the level of ±8.5% absolute and ±2% relative, respectively.
Physics of Plasmas | 2013
N. B. Meezan; A. J. Mackinnon; Damien G. Hicks; E. L. Dewald; R. Tommasini; S. Le Pape; T. Döppner; T. Ma; D. R. Farley; D. H. Kalantar; P. Di Nicola; D. A. Callahan; H. F. Robey; C. A. Thomas; S. T. Prisbrey; O. S. Jones; J. L. Milovich; D. S. Clark; D. Eder; M. B. Schneider; K. Widmann; J. A. Koch; J. D. Salmonson; Y. P. Opachich; L.R. Benedetti; S. F. Khan; A. G. MacPhee; S. Glenn; D. K. Bradley; E. G. Dzenitis
Backlit convergent ablator experiments on the National Ignition Facility [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] are indirect drive implosions that study the inflight dynamics of an imploding capsule. Side-on, backlit radiography provides data used by the National Ignition Campaign to measure time-dependent properties of the capsule ablator including its center of mass radius, velocity, and unablated mass. Previously, Callahan [D. A. Callahan et al., Phys. Plasmas 19, 056305 (2012)] and Hicks [D. H. Hicks et al., Phys. Plasmas 19, 122702 (2012)] reported backlit convergent ablator experiments demonstrating velocities approaching those required for ignition. This paper focuses on implosion performance data in the “rocket curve” plane, velocity vs. ablator mass. These rocket curve data, along with supporting numerical simulations, show that the nominal 195 μm-thick ignition capsule would reach the ignition velocity goal V = 370 km/s with low ablator mass remaining–below the goal of M = 0.25 mg...
Fusion Science and Technology | 2016
M. Spaeth; Kenneth R. Manes; M. W. Bowers; Peter M. Celliers; J. M. Di Nicola; P. Di Nicola; S. Dixit; Gaylen V. Erbert; John E. Heebner; D. H. Kalantar; O. L. Landen; B. J. MacGowan; B. Van Wonterghem; Paul J. Wegner; C. Widmayer; Steven T. Yang
Abstract The National Ignition Facility (NIF) laser is the culmination of more than 40 years of work at Lawrence Livermore National Laboratory dedicated to the delivery of laser systems capable of driving experiments for the study of high-energy-density physics. Although NIF was designed to support a number of missions, it was clear from the beginning that its biggest challenge was to meet the requirements for pursuit of inertial confinement fusion. Meeting the Project Completion Criteria for NIF in 2009 and for the National Ignition Campaign (NIC) in 2012 included meeting the NIF Functional Requirements and Primary Criteria that were established for the project in 1994. During NIC and as NIF transitioned to a user facility, its goals were expanded to include requirements defined by the broader user community as well as by laser system designers and operators.
Proceedings of SPIE | 2012
P. Di Nicola; D. H. Kalantar; T. McCarville; J. Klingmann; S. Alvarez; Roger Lowe-Webb; Janice K. Lawson; P. S. Datte; P. Danforth; M. B. Schneider; J. M. Di Nicola; Jessie Jackson; Charles D. Orth; Steve G. Azevedo; R. Tommasini; Anastacia M. Manuel; R. Wallace
The requirements for beam and target alignment for successful ignition experiments on the National Ignition Facility (NIF) are stringent: the average of beams to the target must be within 25 μm. Beam and target alignment are achieved with the Target Alignment Sensor (TAS). The TAS is a precision optical device that is inserted into target chamber center to facilitate both beam and target alignment. It incorporates two camera views (upper/lower and side) mounted on each of two stage assemblies (jaws) to view and align the target. It also incorporates a large mirror on each of the two assemblies to reflect the alignment beams onto the upper/lower cameras for beam alignment. The TAS is located in the chamber using reference features by viewing it with two external telescope views. The two jaws are adjusted in elevation to match the desired beam and target alignment locations. For some shot setups, a sequence of TAS positions is required to achieve the full setup and alignment. In this paper we describe the TAS, the characterization of the TAS coordinates for beam and target alignment, and summarize pointing shots that demonstrate the accuracy of beam-target alignment.
Physics of Plasmas | 2017
H. Chen; Mark Hermann; D. H. Kalantar; D. Martinez; P. Di Nicola; R. Tommasini; O. L. Landen; D. Alessi; M. W. Bowers; D. Browning; G. Brunton; Tracy Budge; John K. Crane; J. M. Di Nicola; T. Döppner; S. Dixit; Gaylen V. Erbert; B. Fishler; J. Halpin; M. Hamamoto; John E. Heebner; Vincent J. Hernandez; M. Hohenberger; Doug Homoelle; J. Honig; W. W. Hsing; N. Izumi; S. F. Khan; K. N. LaFortune; Janice K. Lawson
The Advanced Radiographic Capability (ARC) laser system at the National Ignition Facility (NIF) is designed to ultimately provide eight beamlets with a pulse duration adjustable from 1 to 30 ps, and energies up to 1.5 kJ per beamlet. Currently, four beamlets have been commissioned. In the first set of 6 commissioning target experiments, the individual beamlets were fired onto gold foil targets with energy up to 1 kJ per beamlet at 20–30 ps pulse length. The x-ray energy distribution and pulse duration were measured, yielding energy conversion efficiencies of 4–9 × 10−4 for x-rays with energies greater than 70 keV. With greater than 3 J of such x-rays, ARC provides a high-precision x-ray backlighting capability for upcoming inertial confinement fusion and high-energy-density physics experiments on NIF.
Proceedings of SPIE | 2012
D. H. Kalantar; P. Di Nicola; N. Shingleton; Scott C. Burkhart; John M. Dzenitis; J. Klingmann; Janice K. Lawson; J. Lutz; D. Manha; Anastacia M. Manuel; T. McCarville; Elizabeth Palma; David C. Pigg; K. Widmann; R. Wood
The National Ignition Facility (NIF) is a 192-beam high energy laser designed for Inertial Confinement Fusion (ICF), and High Energy Density (HED) and basic science experiments. In order to achieve ignition with an ICF target, the beam and target alignment must be performed within very tight specifications. At the same time, in order to be able to conduct the wide range of HED and basic science experiments, the facility must be able to meet the tight tolerances for both main and offset backlighter beams and targets. To diagnose the ignition event, many different target diagnostics are employed, including optical, x-ray, and nuclear diagnostics. These target diagnostics must also be positioned accurately and reliably within very tight specifications in order to ensure good data is acquired. In this paper, we describe the strategy for beam, target, and diagnostic alignment at NIF.
Physics of Plasmas | 2017
R. Tommasini; C. Bailey; D. K. Bradley; M. W. Bowers; H. Chen; J. M. Di Nicola; P. Di Nicola; G. Gururangan; G. Hall; C. M. Hardy; D. Hargrove; Mark Hermann; M. Hohenberger; J. P. Holder; W. W. Hsing; N. Izumi; D. H. Kalantar; S. F. Khan; J. J. Kroll; O. L. Landen; Janice K. Lawson; D. Martinez; N. Masters; J. R. Nafziger; S. R. Nagel; A. Nikroo; J. Okui; D. Palmer; R. Sigurdsson; S. Vonhof
High-resolution, high-energy X-ray backlighters are very active area of research for radiography experiments at the National Ignition Facility (NIF) [Miller et al., Nucl. Fusion 44, S228 (2004)], in particular those aiming at obtaining Compton-scattering produced radiographs from the cold, dense fuel surrounding the hot spot. We report on experiments to generate and characterize point-projection-geometry backlighters using short pulses from the advanced radiographic capability (ARC) [Crane et al., J. Phys. 244, 032003 (2010); Di Nicola et al., Proc. SPIE 2015, 93450I-12], at the NIF, focused on Au micro-wires. We show the first hard X-ray radiographs, at photon energies exceeding 60 keV, of static objects obtained with 30 ps-long ARC laser pulses, and the measurements of strength of the X-ray emission, the pulse duration and the source size of the Au micro-wire backlighters. For the latter, a novel technique has been developed and successfully applied.
Proceedings of SPIE | 2010
Scott C. Burkhart; Erlan S. Bliss; P. Di Nicola; D. H. Kalantar; Roger Lowe-Webb; T. McCarville; D. Nelson; Thad Salmon; T. Schindler; J. Villanueva; Karl Wilhelmsen
The National Ignition Facility in Livermore, California, completed its commissioning milestone on March 10, 2009 when it fired all 192 beams at a combined energy of 1.1 MJ at 351nm. Subsequently, a target shot series from August through December of 2009 culminated in scale ignition target design experiments up to 1.2 MJ in the National Ignition Campaign. Preparations are underway through the first half of of 2010 leading to DT ignition and gain experiments in the fall of 2010 into 2011. The top level requirement for beam pointing to target of 50μm rms is the culmination of 15 years of engineering design of a stable facility, commissioning of precision alignment, and precise shot operations controls. Key design documents which guided this project were published in the mid 1990s, driving systems designs. Precision Survey methods were used throughout construction, commissioning and operations for precision placement. Rigorous commissioning processes were used to ensure and validate placement and alignment throughout commissioning and in present day operations. Accurate and rapid system alignment during operations is accomplished by an impressive controls system to align and validate alignment readiness, assuring machine safety and productive experiments.