Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Peacock is active.

Publication


Featured researches published by J. Peacock.


Science | 2009

Drought sensitivity of the Amazon rainforest

Oliver L. Phillips; Luiz E. O. C. Aragão; Simon L. Lewis; Joshua B. Fisher; Jon Lloyd; Gabriela Lopez-Gonzalez; Yadvinder Malhi; Abel Monteagudo; J. Peacock; Carlos A. Quesada; Geertje M.F. van der Heijden; Samuel Almeida; Iêda Leão do Amaral; Luzmila Arroyo; Gerardo Aymard; Timothy R. Baker; Olaf Banki; Lilian Blanc; Damien Bonal; Paulo M. Brando; Jérôme Chave; Atila Alves de Oliveira; Nallaret Dávila Cardozo; Claudia I. Czimczik; Ted R. Feldpausch; Maria Aparecida Freitas; Emanuel Gloor; Niro Higuchi; Eliana M. Jimenez; Gareth Lloyd

Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 × 1015 to 1.6 × 1015 grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.


Nature | 2009

Increasing carbon storage in intact African tropical forests

Simon L. Lewis; Gabriela Lopez-Gonzalez; Bonaventure Sonké; Kofi Affum-Baffoe; Timothy R. Baker; Lucas Ojo; Oliver L. Phillips; Jan Reitsma; Lee White; James A. Comiskey; Marie‐Noël Djuikouo K; Corneille E. N. Ewango; Ted R. Feldpausch; Alan Hamilton; Manuel Gloor; Terese B. Hart; Annette Hladik; Jon Lloyd; Jon C. Lovett; Jean-Remy Makana; Yadvinder Malhi; Frank Mbago; Henry J. Ndangalasi; J. Peacock; Kelvin S.-H. Peh; Douglas Sheil; Terry Sunderland; Michael D. Swaine; James Taplin; David Taylor

The response of terrestrial vegetation to a globally changing environment is central to predictions of future levels of atmospheric carbon dioxide. The role of tropical forests is critical because they are carbon-dense and highly productive. Inventory plots across Amazonia show that old-growth forests have increased in carbon storage over recent decades, but the response of one-third of the world’s tropical forests in Africa is largely unknown owing to an absence of spatially extensive observation networks. Here we report data from a ten-country network of long-term monitoring plots in African tropical forests. We find that across 79 plots (163 ha) above-ground carbon storage in live trees increased by 0.63 Mg C ha-1 yr-1 between 1968 and 2007 (95% confidence interval (CI), 0.22–0.94; mean interval, 1987–96). Extrapolation to unmeasured forest components (live roots, small trees, necromass) and scaling to the continent implies a total increase in carbon storage in African tropical forest trees of 0.34 Pg C yr-1 (CI, 0.15–0.43). These reported changes in carbon storage are similar to those reported for Amazonian forests per unit area, providing evidence that increasing carbon storage in old-growth forests is a pan-tropical phenomenon. Indeed, combining all standardized inventory data from this study and from tropical America and Asia together yields a comparable figure of 0.49 Mg C ha-1 yr-1 (n = 156; 562 ha; CI, 0.29–0.66; mean interval, 1987–97). This indicates a carbon sink of 1.3 Pg C yr-1 (CI, 0.8–1.6) across all tropical forests during recent decades. Taxon-specific analyses of African inventory and other data suggest that widespread changes in resource availability, such as increasing atmospheric carbon dioxide concentrations, may be the cause of the increase in carbon stocks, as some theory and models predict.


Nature | 2015

Long-term decline of the Amazon carbon sink

Roel J. W. Brienen; Oliver L. Phillips; Ted R. Feldpausch; Emanuel Gloor; Timothy R. Baker; Jon Lloyd; Gabriela Lopez-Gonzalez; Abel Monteagudo-Mendoza; Yadvinder Malhi; Simon L. Lewis; R. Vásquez Martínez; Miguel Alexiades; E. Álvarez Dávila; Patricia Alvarez-Loayza; Ana Andrade; Luiz E. O. C. Aragão; Alejandro Araujo-Murakami; E.J.M.M. Arets; Luzmila Arroyo; Olaf S. Bánki; Christopher Baraloto; Jorcely Barroso; Damien Bonal; Rene G. A. Boot; José Luís C. Camargo; Carolina V. Castilho; V. Chama; Kuo-Jung Chao; Jérôme Chave; James A. Comiskey

Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models.


Journal of Vegetation Science | 2007

The RAINFOR database: monitoring forest biomass and dynamics

J. Peacock; Timothy R. Baker; Simon L. Lewis; Gabriela Lopez-Gonzalez; Oliver L. Phillips

Abstract Problem: Data from over 100 permanent sample plots which have been studied for 10–20 years need a suitable system for storage which allows simple data manipulation and retrieval for analysis. Methods: A relational database linking tree records, taxonomic nomenclature and corresponding environmental data has been built in MS Access as part of the RAINFOR project. Conclusion: The database allows flexible and long-term use of a large amount of data: more than 100 tree plots across Amazonia, incorporating over 80 000 records of individual trees and over 300 000 total records of tree diameter measurements from successive censuses. The database is designed to enable linkages to existing soil, floristic or plant-trait databases. This database will be a useful tool for exploring the impact of environmental factors on forest structure and dynamics at local to continental scales, and long term changes in forest ecology. As an early example of its potential, we explore the impact of different methodological assumptions on estimates of tropical forest biomass and carbon storage.


Ecography | 2017

Seasonal drought limits tree species across the Neotropics

Adriane Esquivel-Muelbert; Timothy R. Baker; Kyle G. Dexter; Simon L. Lewis; Hans ter Steege; Gabriela Lopez-Gonzalez; Abel Monteagudo Mendoza; Roel J. W. Brienen; Ted R. Feldpausch; Nigel C. A. Pitman; Alfonso Alonso; Geertje M.F. van der Heijden; Marielos Peña-Claros; Manuel Ahuite; Miguel Alexiaides; Esteban Álvarez Dávila; Alejandro Araujo Murakami; Luzmila Arroyo; Milton Aulestia; Henrik Balslev; Jorcely Barroso; Rene G. A. Boot; Ángela Cano; Victor Chama Moscoso; James A. Comiskey; Fernando Cornejo; Francisco Dallmeier; Douglas C. Daly; Nállarett Dávila; Joost F. Duivenvoorden

Within the tropics, the species richness of tree communities is strongly and positively associated with precipitation. Previous research has suggested that this macroecological pattern is driven by the negative effect of water-stress on the physiological processes of most tree species. This process implies that the range limits of taxa are defined by their ability to occur under dry conditions, and thus in terms of species distributions it predicts a nested pattern of taxa distribution from wet to dry areas. However, this ‘dry-tolerance’ hypothesis has yet to be adequately tested at large spatial and taxonomic scales. Here, using a dataset of 531 inventory plots of closed canopy forest distributed across the Western Neotropics we investigated how precipitation, evaluated both as mean annual precipitation and as the maximum climatological water deficit, influences the distribution of tropical tree species, genera and families. We find that the distributions of tree taxa are indeed nested along precipitation gradients in the western Neotropics. Taxa tolerant to seasonal drought are disproportionally widespread across the precipitation gradient, with most reaching even the wettest climates sampled; however, most taxa analysed are restricted to wet areas. Our results suggest that the ‘dry tolerance’ hypothesis has broad applicability in the worlds most species-rich forests. In addition, the large number of species restricted to wetter conditions strongly indicates that an increased frequency of drought could severely threaten biodiversity in this region. Overall, this study establishes a baseline for exploring how tropical forest tree composition may change in response to current and future environmental changes in this region.


Journal of Geography in Higher Education | 2018

The use of campus based field teaching to provide an authentic experience to all students

J. Peacock; Ruth Mewis; Deirdre Rooney

Abstract Fieldwork is an important part of undergraduate degrees in Geography and has been shown to be an effective pedagogic strategy. Fieldtrips are often to remote locations, both residential and shorter day trips. For institutions, field trips can be costly in terms of money and staff time and difficult to timetable. Some students may have difficulty attending due to caring commitments or employment. For some, going to a novel environment to learn new skills can be overwhelming. At Askham Bryan College a “Field and Environmental Techniques” module for Foundation Degree level students, ran in weekly two hour sessions, for 24 sessions. These were formatted to suit the College timetable and to fit with students other commitments. It resulted in a structure re-think, moving from individual lectures and longer fieldtrips to an integration of theory and fieldwork in short sessions utilizing the campus environment. Student surveys revealed this structure benefited learning as they could link theory with practice and it prepared them for carrying out future fieldwork in novel locations. In addition, students highlighted the social benefits of the module. Social aspects of fieldwork are regularly reported as a benefit of residential trips, but it was an unexpected benefit of this module.


PeerJ | 2018

Economic value of trees in the estate of the Harewood House stately home in the United Kingdom

J. Peacock; Joey Ting; Karen L. Bacon

The estates of stately homes or manor houses are an untapped resource for assessing the ecosystem services provided by trees. Many of these estates have large collections of trees with clear value in terms of carbon storage, runoff prevention, and pollution removal along with additional benefits to biodiversity and human health. The estate of Harewood House in North Yorkshire represents an ideal example of such a stately home with a mixture of parkland and more formally planted gardens. The trees in each type of garden were analysed for height, diameter at breast height and light exposure. The data were then processed in iTrees software to generate economic benefits for each tree in both gardens. The analysis found that the larger North Front parkland garden had greater total benefits but the more densely planted formal West Garden had the greater per hectare value. In total, the trees on Harewood House estate are estimated to provide approximately £29 million in ecosystem service benefits. This study is the first to analyse the trees of stately homes for economic benefits and highlights that the trees are a valuable commodity for the estates. This should be considered in future planning and management of such estates.


Higher Education Pedagogies | 2018

Enhancing Student Employability through Urban Ecology Fieldwork

J. Peacock; Karen L. Bacon

Abstract Students undertook a one-hour urban ecology activity based on the University of Leeds campus. The aims of the session were (1) to help students to link ecological theory to practice and (2) to encourage students to begin to think about and develop an online professional identity. Students were encouraged to tweet throughout the session and were surveyed four weeks after the session to determine if the aims had been met. A majority of students enjoyed the session and saw the links between the theory and practice of ecology. Most students also identified that an online professional identity is important and something that they should be developing. The session highlights that employability and professional development skills can be introduced to students within a subject-specific context early in their degree programme and still highlight the importance of generic transferable skills related to employability.


Archive | 2014

Plot Data from: "Long-term decline of the Amazon carbon sink."

Roel J. W. Brienen; Oliver L. Phillips; Ted R. Feldpausch; Emanuel Gloor; Timothy R. Baker; Jonathan Lloyd; Gabriela Lopez-Gonzalez; Abel Monteagudo Mendoza; Yadvinder Malhi; Simon L. Lewis; Rodolfo Vásquez Martinez; Miguel Alexiades; Esteban Álvarez Dávila; Patricia Alvarez-Loayza; Ana Andrade; Luiz E. O. C. Aragão; Alejandro Araujo Murakami; E.J.M.M. Arets; Luzmila Arroyo; A C Gerardo Aymard; Olaf Banki; Christopher Baraloto; Jorcely Barroso; Damien Bonal; Rene G. A. Boot; José Luís C. Camargo; Carolina V. Castilho; Victor Chama; Kuo-Jung Chao; Jérôme Chave

Atmospheric CO2 records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink likely located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historic evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that the Amazon has acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above ground biomass declined by a third during the last decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while reduction in biomass due to tree mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include a greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models.


Biogeosciences | 2012

Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate

Carlos A. Quesada; Oliver L. Phillips; Michael Schwarz; Claudia I. Czimczik; Timothy R. Baker; S. Patiño; Nikolaos M. Fyllas; M. G. Hodnett; Rafael Segundo Herrera; S. Almeida; E. Álvarez Dávila; Almut Arneth; Luzmila Arroyo; Kuo-Jung Chao; N. Dezzeo; Terry L. Erwin; A. Di Fiore; Niro Higuchi; E.N. Honorio Coronado; Elena Jimenez; Timothy J. Killeen; Armando Torres Lezama; G. Lloyd; Gabriela Lopez-Gonzalez; Flávio J. Luizão; Yadvinder Malhi; Abel Monteagudo; David A. Neill; P. Núñez Vargas; R. Paiva

Collaboration


Dive into the J. Peacock's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abel Monteagudo

Missouri Botanical Garden

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Neill

Missouri Botanical Garden

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge