Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jaan Hong is active.

Publication


Featured researches published by Jaan Hong.


Biomaterials | 1999

A new in vitro model to study interaction between whole blood and biomaterials. Studies of platelet and coagulation activation and the effect of aspirin

Jaan Hong; Kristina Nilsson Ekdahl; Helena Reynolds; Rolf Larsson; Bo Nilsson

We have developed a versatile in vitro chamber model with a double purpose: first, to be able to study mechanisms of bio-incompatibility, and, second, to test biomaterials at all levels of interactions, in whole blood. The use of biomaterials in the form of microscope slides as walls in the chamber makes it possible to analyse both the biomaterial surface with regard to protein and cell binding, as well as the molecular events taking place in the fluid. Incubation of blood in the chamber, for 60 min at 37 degrees C resulted in the rapid binding of complement and coagulation proteins and of leukocytes and platelets to polyvinylchloride (PVC) slides. The cells formed a layer which more or less covered the underlying surface. Unlike complement activation, as reflected by soluble C3a and C5b-9, the thrombin-antithrombin formation was completely nullified in cell-depleted plasma. Despite the fact that thrombin-antithrombin generation was also negligible in platelet-rich plasma, inhibition of platelet aggregation on the material surface with aspirin resulted in suppressed generation of thrombin antithrombin complexes. Taken together, the coagulation activation in the chamber was dependent on the presence of blood cells which suggests that bound/aggregated platelets initiate a sequence of events involving leukocytes that results in coagulation activation.


Journal of the Royal Society Interface | 2012

Haemocompatibility and ion exchange capability of nanocellulose polypyrrole membranes intended for blood purification

Natalia Ferraz; Daniel O Carlsson; Jaan Hong; Rolf Larsson; Bengt Fellström; Leif Nyholm; Maria Strømme; Albert Mihranyan

Composites of nanocellulose and the conductive polymer polypyrrole (PPy) are presented as candidates for a new generation of haemodialysis membranes. The composites may combine active ion exchange with passive ultrafiltration, and the large surface area (about 80 m2 g−1) could potentially provide compact dialysers. Herein, the haemocompatibility of the novel membranes and the feasibility of effectively removing small uraemic toxins by potential-controlled ion exchange were studied. The thrombogenic properties of the composites were improved by applying a stable heparin coating. In terms of platelet adhesion and thrombin generation, the composites were comparable with haemocompatible polymer polysulphone, and regarding complement activation, the composites were more biocompatible than commercially available membranes. It was possible to extract phosphate and oxalate ions from solutions with physiological pH and the same tonicity as that of the blood. The exchange capacity of the materials was found to be 600 ± 26 and 706 ± 31 μmol g−1 in a 0.1 M solution (pH 7.4) and in an isotonic solution of phosphate, respectively. The corresponding values with oxalate were 523 ± 5 in a 0.1 M solution (pH 7.4) and 610 ± 1 μmol g−1 in an isotonic solution. The heparinized PPy–cellulose composite is consequently a promising haemodialysis material, with respect to both potential-controlled extraction of small uraemic toxins and haemocompatibility.


Biomaterials | 2013

Autoregulation of thromboinflammation on biomaterial surfaces by a multicomponent therapeutic coating

Per H. Nilsson; Kristina Nilsson Ekdahl; Peetra U. Magnusson; Hiroo Iwata; Daniel Ricklin; Jaan Hong; John D. Lambris; Bo Nilsson; Yuji Teramura

Abstract Activation of the thrombotic and complement systems is the main recognition and effector mechanisms in the multiple adverse biological responses triggered when biomaterials or therapeutic cells come into blood contact. We have created a surface which is auto-protective to human innate immunity by combining three fundamentally different strategies, all developed by us previously, which have been shown to induce substantial, but incomplete hemocompatibility when used separately. In summary, we have conjugated a factor H–binding peptide; and an ADP-degrading enzyme; using a PEG linker on both material and cellular surfaces. When exposed to human whole blood, factor H was specifically recruited to the modified surfaces and inhibited complement attack. In addition, activation of platelets and coagulation was efficiently attenuated, by degrading ADP. Thus, by inhibiting thromboinflammation using a multicomponent approach, we have created a hybrid surface with the potential to greatly reduce incompatibility reactions involving biomaterials and transplantation.


Advances in Experimental Medicine and Biology | 2013

Evaluation of the blood compatibility of materials, cells, and tissues: basic concepts, test models, and practical guidelines.

Kristina Nilsson Ekdahl; Jaan Hong; Osama A. Hamad; Rolf Larsson; Bo Nilsson

Medicine today uses a wide range of biomaterials, most of which make contact with blood permanently or transiently upon implantation. Contact between blood and nonbiological materials or cells or tissue of nonhematologic origin initiates activation of the cascade systems (complement, contact activation/coagulation) of the blood, which induces platelet and leukocyte activation. Although substantial progress regarding biocompatibility has been made, many materials and medical treatment procedures are still associated with severe side effects. Therefore, there is a great need for adequate models and guidelines for evaluating the blood compatibility of biomaterials. Due to the substantial amount of cross talk between the different cascade systems and cell populations in the blood, it is advisable to use an intact system for evaluation. Here, we describe three such in vitro models for the evaluation of the biocompatibility of materials and therapeutic cells and tissues. The use of different anticoagulants and specific inhibitors in order to be able to dissect interactions between the different cascade systems and cells of the blood is discussed. In addition, we describe two clinically relevant medical treatment modalities, the integration of titanium implants and transplantation of islets of Langerhans to patients with type 1 diabetes, whose mechanisms of action we have addressed using these in vitro models.


Journal of Biomedical Materials Research Part A | 2011

An in vitro study of blood compatibility of vascular grafts made of bacterial cellulose in comparison with conventionally-used graft materials

Helen Fink; Jaan Hong; Kristoffer Drotz; Bo Risberg; Javier Sanchez; Anders Sellborn

In this study we analyzed the blood compatibility of bacterial cellulose (BC) as a new biosynthetic material for use as a vascular graft. As reference materials we used expanded polytetrafluoroethylene (ePTFE) and poly(ethylene terephthalate) (PET) vascular grafts. These materials are in clinical use today. Tubes with inner diameters of both 4 (not PET) and 6 mm were tested. Heparin-coated PVC tubes (hepPVC) were used as a negative control. Platelet consumption and thrombin-antithrombin complex (TAT) were used as parameters of coagulation and for complement activation, sC3a and sC5b-9 were used. The investigated parameters were measured after 1-h exposure to freshly drawn human blood supplemented with a low dose of heparin in a Chandler loop system. The results showed that BC exhibits no significant difference in platelet consumption, as compared with PET (6 mm), ePTFE and hepPVC. The PET material consumed more platelets than any of the other materials. The TAT generation for 4 mm tubes was not significantly different between BC and the other materials. For 6 mm tubes, however, differences were observed between hepPVC and PET (p < 0.0001); BC and hepPVC (p = 0.0016); ePTFE and PET (p < 0.0001); BC and ePTFE (p = 0.0029); BC and PET (p = 0.0141). Surprisingly, considering the low platelet consumption, the complement activation parameters (sC3a and sC5b-9) were much higher for BC, as compared with the other materials for both 4 and 6 mm tubes.


Journal of Biomedical Materials Research Part A | 2008

Nanoporesize affects complement activation

Natalia Ferraz; Bo Nilsson; Jaan Hong; Marjam Karlsson Ott

In the present study, we have shown the vast importance of biomaterial nanotexture when evaluating inflammatory response. For the first time in an in vitro whole blood system, we have proven that a small increase in nanoporesize, specifically 180 nm (from 20 to 200 nm), has a huge effect on the complement system. The study was done using nanoporous aluminiumoxide, a material that previously has been evaluated for potential implant use, showing good biocompatibility. This material can easily be manufactured with different pore sizes making it an excellent candidate to govern specific protein and cellular events at the tissue-material interface. We performed whole blood studies, looking at complement activation after blood contact with two pore size alumina membranes (pore diameters, 20 and 200 nm). The fluid phase was analyzed for complement soluble components, C3a and sC5b-9. In addition, surface adsorbed proteins were eluted and dot blots were performed to detect IgG, IgM, C1q, and C3. All results point to the fact that 200 nm pore size membranes are more complement activating. Significantly, higher values of complement soluble components were found after whole blood contact with 200 nm alumina and all studied proteins adsorbed more readily to this membrane than to the 20 nm pore size membrane. We hypothesize that the difference in complement activation between our two test materials is caused by the type and the amount of adsorbed proteins, as well as their conformation and orientation. The different protein patterns created on the two alumina membranes are most likely a consequence of the material topography.


Immunological Reviews | 2016

Dangerous liaisons: complement, coagulation, and kallikrein/kinin cross-talk act as a linchpin in the events leading to thromboinflammation

Kristina Nilsson Ekdahl; Yuji Teramura; Osama A. Hamad; Sana Asif; Claudia Duehrkop; Karin Fromell; Elisabet Gustafson; Jaan Hong; Huda Kozarcanin; Peetra U. Magnusson; Markus Huber-Lang; Peter Garred; Bo Nilsson

Innate immunity is fundamental to our defense against microorganisms. Physiologically, the intravascular innate immune system acts as a purging system that identifies and removes foreign substances leading to thromboinflammatory responses, tissue remodeling, and repair. It is also a key contributor to the adverse effects observed in many diseases and therapies involving biomaterials and therapeutic cells/organs. The intravascular innate immune system consists of the cascade systems of the blood (the complement, contact, coagulation, and fibrinolytic systems), the blood cells (polymorphonuclear cells, monocytes, platelets), and the endothelial cell lining of the vessels. Activation of the intravascular innate immune system in vivo leads to thromboinflammation that can be activated by several of the systems pathways and that initiates repair after tissue damage and leads to adverse reactions in several disorders and treatment modalities. In this review, we summarize the current knowledge in the field and discuss the obstacles that exist in order to study the cross‐talk between the components of the intravascular innate immune system. These include the use of purified in vitro systems, animal models and various types of anticoagulants. In order to avoid some of these obstacles we have developed specialized human whole blood models that allow investigation of the cross‐talk between the various cascade systems and the blood cells. We in particular stress that platelets are involved in these interactions and that the lectin pathway of the complement system is an emerging part of innate immunity that interacts with the contact/coagulation system. Understanding the resulting thromboinflammation will allow development of new therapeutic modalities.


Clinical Implant Dentistry and Related Research | 2013

A Hydrophilic Dental Implant Surface Exhibit Thrombogenic Properties In Vitro

Jaan Hong; Seta Kurt; Andreas Thor

BACKGROUND Surface modifications of dental implants have gained attention during several years and the thrombotic response from blood components with these materials has become more important during recent years. PURPOSE The aims of this study were to evaluate the thrombogenic response of whole blood, in contact with clinically used dental surfaces, Sandblasted Large grit Acid etched titanium (SLA) and Sandblasted Large grit Acid etched, and chemically modified titanium with hydrophilic properties (SLActive). METHODS An in vitro slide chamber model, furnished with heparin, was used in which whole blood came in contact with slides of the test surfaces. After incubation (60-minute rotation at 22 rpm in a 37°C water bath), blood was mixed with ethylenediaminetetraacetic acid (EDTA) or citrate, further centrifuged at +4°C. Finally, plasma was collected pending analysis. RESULTS Whole blood in contact with surfaces resulted in significantly higher binding of platelets to the hydrophilic surface, accompanied by a significant increase of contact activation of the coagulation cascade. In addition, the platelet activation showed a similar pattern with a significant elevated release of β-TG from platelet granule. CONCLUSIONS The conclusion that can be drawn from the results in our study is that the hydrophilic modification seems to augment the thrombogenic properties of titanium with implications for healing into bone of, that is titanium dental implants.


International Journal of Biomaterials | 2010

Nanoporosity of Alumina Surfaces Induces Different Patterns of Activation in Adhering Monocytes/Macrophages

Natalia Ferraz; Jaan Hong; Matteo Santin; Marjam Karlsson Ott

The present study shows that alumina nanotopography affects monocyte/macrophage behavior. Human mononuclear cells cultured on alumina membranes with pore diameters of 20 and 200 nm were evaluated in terms of cell adhesion, viability, morphology, and release of proinflammatory cytokines. After 24 hours, cell adhesion was assessed by means of light microscopy and cell viability by measuring LDH release. The inflammatory response was evaluated by quantifying interleukin-1β and tumour necrosis factor-α. Finally, scanning electron microscopy was used to study cell morphology. Results showed pronounced differences in cell number, morphology, and cytokine release depending on the nanoporosity. Few but highly activated cells were found on the 200 nm porous alumina, while relatively larger number of cells were found on the 20 nm porous surface. However, despite their larger number, the cells adhering on the 20 nm surface exhibited reduced pro-inflammatory activity. The data of this paper implies that nanotopography could be exploited for controlling the inflammatory response to implants.


Biomaterials | 2015

TiO2 nanoparticles tested in a novel screening whole human blood model of toxicity trigger adverse activation of the kallikrein system at low concentrations

Barbro Ekstrand-Hammarström; Jaan Hong; Padideh Davoodpour; Kerstin Sandholm; Kristina Nilsson Ekdahl; Anders Bucht; Bo Nilsson

There is a compelling need to understand and assess the toxicity of industrially produced nanoparticles (NPs). In order to appreciate the long-term effects of NPs, sensitive human-based screening tests that comprehensively map the NP properties are needed to detect possible toxic mechanisms. Animal models can only be used in a limited number of test applications and are subject to ethical concerns, and the interpretation of experiments in animals is also distorted by the species differences. Here, we present a novel easy-to-perform highly sensitive whole-blood model using fresh non-anticoagulated human blood, which most justly reflects complex biological cross talks in a human system. As a demonstrator of the tests versatility, we evaluated the toxicity of TiO2 NPs that are widely used in various applications and otherwise considered to have relatively low toxic properties. We show that TiO2 NPs at very low concentrations (50 ng/mL) induce strong activation of the contact system, which in this model elicits thromboinflammation. These data are in line with the finding of components of the contact system in the protein corona of the TiO2 NPs after exposure to blood. The contact system activation may lead to both thrombotic reactions and generation of bradykinin, thereby representing fuel for chronic inflammation in vivo and potentially long-term risk of autoimmunity, arteriosclerosis and cancer. These results support the notion that this novel whole-blood model represents an important contribution to testing of NP toxicity.

Collaboration


Dive into the Jaan Hong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bengt Fellström

Uppsala University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge