Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James Bready is active.

Publication


Featured researches published by James Bready.


Cancer Research | 2006

AMG 706, an Oral, Multikinase Inhibitor that Selectively Targets Vascular Endothelial Growth Factor, Platelet-Derived Growth Factor, and Kit Receptors, Potently Inhibits Angiogenesis and Induces Regression in Tumor Xenografts

Anthony Polverino; Angela Coxon; Charlie Starnes; Zobedia Diaz; Thomas DeMelfi; Ling Wang; James Bready; Juan Estrada; Russell C. Cattley; Stephen Kaufman; Danlin Chen; Yongmei Gan; Gondi Kumar; James Meyer; Sesha Neervannan; Gonzalo Alva; Jane Talvenheimo; Silvia Montestruque; Andrew Tasker; Vinod F. Patel; Robert Radinsky; Richard Kendall

The growth of solid tumors is dependent on the continued stimulation of endothelial cell proliferation and migration resulting in angiogenesis. The angiogenic process is controlled by a variety of factors of which the vascular endothelial growth factor (VEGF) pathway and its receptors play a pivotal role. Small-molecule inhibitors of VEGF receptors (VEGFR) have been shown to inhibit angiogenesis and tumor growth in preclinical models and in clinical trials. A novel nicotinamide, AMG 706, was identified as a potent, orally bioavailable inhibitor of the VEGFR1/Flt1, VEGFR2/kinase domain receptor/Flk-1, VEGFR3/Flt4, platelet-derived growth factor receptor, and Kit receptors in preclinical models. AMG 706 inhibited human endothelial cell proliferation induced by VEGF, but not by basic fibroblast growth factor in vitro, as well as vascular permeability induced by VEGF in mice. Oral administration of AMG 706 potently inhibited VEGF-induced angiogenesis in the rat corneal model and induced regression of established A431 xenografts. AMG 706 was well tolerated and had no significant effects on body weight or on the general health of the animals. Histologic analysis of tumor xenografts from AMG 706-treated animals revealed an increase in endothelial apoptosis and a reduction in blood vessel area that preceded an increase in tumor cell apoptosis. In summary, AMG 706 is an orally bioavailable, well-tolerated multikinase inhibitor that is presently under clinical investigation for the treatment of human malignancies.


Cancer Research | 2010

Complementary Actions of Inhibitors of Angiopoietin-2 and VEGF on Tumor Angiogenesis and Growth

Hiroya Hashizume; Beverly L. Falcon; Takashi Kuroda; Peter Baluk; Angela Coxon; Dongyin Yu; James Bready; Jonathan D. Oliner; Donald M. McDonald

Inhibition of angiopoietin-2 (Ang2) can slow tumor growth, but the underlying mechanism is not fully understood. Because Ang2 is expressed in growing blood vessels and promotes angiogenesis driven by vascular endothelial growth factor (VEGF), we asked whether the antitumor effect of Ang2 inhibition results from reduced sprouting angiogenesis and whether the effect is augmented by inhibition of VEGF from tumor cells. Using Colo205 human colon carcinomas in nude mice as a model, we found that selective inhibition of Ang2 by the peptide-Fc fusion protein L1-7(N) reduced the number of vascular sprouts by 46% and tumor growth by 62% over 26 days. Strikingly, when the Ang2 inhibitor was combined with a function-blocking anti-VEGF antibody, the number of sprouts was reduced by 82%, tumor vascularity was reduced by 67%, and tumor growth slowed by 91% compared with controls. The reduction in tumor growth was accompanied by decreased cell proliferation and increased apoptosis. We conclude that inhibition of Ang2 slows tumor growth by limiting the expansion of the tumor vasculature by sprouting angiogenesis, in a manner that is complemented by concurrent inhibition of VEGF and leads to reduced proliferation and increased apoptosis of tumor cells.


American Journal of Pathology | 2009

Contrasting Actions of Selective Inhibitors of Angiopoietin-1 and Angiopoietin-2 on the Normalization of Tumor Blood Vessels

Beverly L. Falcon; Hiroya Hashizume; Petros Koumoutsakos; Jeyling Chou; James Bready; Angela Coxon; Jonathan D. Oliner; Donald M. McDonald

Angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2) have complex actions in angiogenesis and vascular remodeling due to their effects on Tie2 receptor signaling. Ang2 blocks Ang1-mediated activation of Tie2 in endothelial cells under certain conditions but is a Tie2 receptor agonist in others. We examined the effects of selective inhibitors of Ang1 (mL4-3) or Ang2 (L1-7[N]), alone or in combination, on the vasculature of human Colo205 tumors in mice. The Ang2 inhibitor decreased the overall abundance of tumor blood vessels by reducing tumor growth and keeping vascular density constant. After inhibition of Ang2, tumor vessels had many features of normal blood vessels (normalization), as evidenced by junctional accumulation of vascular endothelial-cadherin, junctional adhesion molecule-A, and platelet/endothelial cell adhesion molecule-1 in endothelial cells, increased pericyte coverage, reduced endothelial sprouting, and remodeling into smaller, more uniform vessels. The Ang1 inhibitor by itself had little noticeable effect on the tumor vasculature. However, when administered with the Ang2 inhibitor, the Ang1 inhibitor prevented tumor vessel normalization, but not the reduction in tumor vascularity produced by the Ang2 inhibitor. These findings are consistent with a model whereby inhibition of Ang2 leads to normalization of tumor blood vessels by permitting the unopposed action of Ang1, but decreases tumor vascularity primarily by blocking Ang2 actions.


Molecular Cancer Therapeutics | 2010

Context-Dependent Role of Angiopoietin-1 Inhibition in the Suppression of Angiogenesis and Tumor Growth: Implications for AMG 386, an Angiopoietin-1/2–Neutralizing Peptibody

Angela Coxon; James Bready; Hosung Min; Stephen Kaufman; Juan Leal; Dongyin Yu; Tani Ann Lee; Ji-Rong Sun; Juan Estrada; Brad Bolon; James McCabe; Ling Wang; Karen Rex; Sean Caenepeel; Paul E. Hughes; David Cordover; Haejin Kim; Seog Joon Han; Mark Leo Michaels; Eric Hsu; Grant Shimamoto; Russell C. Cattley; Eunju Hurh; Linh T. Nguyen; Shao Xiong Wang; Anthony Ndifor; Isaac J. Hayward; Beverly L. Falcon; Donald M. McDonald; Luke Li

AMG 386 is an investigational first-in-class peptide-Fc fusion protein (peptibody) that inhibits angiogenesis by preventing the interaction of angiopoietin-1 (Ang1) and Ang2 with their receptor, Tie2. Although the therapeutic value of blocking Ang2 has been shown in several models of tumorigenesis and angiogenesis, the potential benefit of Ang1 antagonism is less clear. To investigate the consequences of Ang1 neutralization, we have developed potent and selective peptibodies that inhibit the interaction between Ang1 and its receptor, Tie2. Although selective Ang1 antagonism has no independent effect in models of angiogenesis-associated diseases (cancer and diabetic retinopathy), it induces ovarian atrophy in normal juvenile rats and inhibits ovarian follicular angiogenesis in a hormone-induced ovulation model. Surprisingly, the activity of Ang1 inhibitors seems to be unmasked in some disease models when combined with Ang2 inhibitors, even in the context of concurrent vascular endothelial growth factor inhibition. Dual inhibition of Ang1 and Ang2 using AMG 386 or a combination of Ang1- and Ang2-selective peptibodies cooperatively suppresses tumor xenograft growth and ovarian follicular angiogenesis; however, Ang1 inhibition fails to augment the suppressive effect of Ang2 inhibition on tumor endothelial cell proliferation, corneal angiogenesis, and oxygen-induced retinal angiogenesis. In no case was Ang1 inhibition shown to (a) confer superior activity to Ang2 inhibition or dual Ang1/2 inhibition or (b) antagonize the efficacy of Ang2 inhibition. These results imply that Ang1 plays a context-dependent role in promoting postnatal angiogenesis and that dual Ang1/2 inhibition is superior to selective Ang2 inhibition for suppression of angiogenesis in some postnatal settings. Mol Cancer Ther; 9(10); 2641–51. ©2010 AACR.


Journal of Immunology | 2001

Stimulatory Effects of B7-Related Protein-1 on Cellular and Humoral Immune Responses in Mice

Jane Guo; Marina Stolina; James Bready; Songmei Yin; Tom Horan; Steven Kiyoshi Yoshinaga; Giorgio Senaldi

Inducible costimulator (ICOS) and B7-related protein-1 (B7RP-1) constitute a receptor-ligand pair involved in T cell costimulation. In this study, the stimulatory effects of B7RP-1 on cellular and humoral immune responses were investigated giving mice a construct with the extracellular domain of murine B7RP-1 fused with human IgG1 Fc (B7RP-1-Fc). B7RP-1-Fc stimulated contact hypersensitivity (CH) given near either the time of sensitization or challenge with oxazolone. When given near challenge time, B7RP-1-Fc stimulated CH more than a construct containing the extracellular domain of murine B7.2 and Fc (B7.2-Fc). B7RP-1-Fc increased the number of cells in lymph nodes draining the skin sensitized with oxazolone, especially activated T cells. B7RP-1-Fc also increased the ability of the cells in these lymph nodes to induce CH when transfused into naive mice. B7RP-1-Fc stimulated the production of anti-keyhole limpet hemocyanin (KLH) Ab, increasing anti-KLH IgG, IgG2a, and IgE, whereas B7.2-Fc did not affect this production. B7RP-1-Fc also increased the number of cells in lymph nodes draining the skin immunized with KLH and their production of IFN-γ, IL-4, and IL-10 in response to KLH. Finally, B7RP-1-Fc increased the presence of eosinophils in the bronchoalveolar lavage and lungs of mice sensitized and challenged with OVA so to mount an asthmatic reaction. B7RP-1-Fc stimulates both cellular and humoral immune responses in vivo by increasing number and function of T and B cells reacting to Ag exposure.


Journal of Medicinal Chemistry | 2008

Naphthamides as novel and potent vascular endothelial growth factor receptor tyrosine kinase inhibitors: design, synthesis, and evaluation.

Jean-Christophe Harmange; Matthew Weiss; Julie Germain; Anthony Polverino; George Borg; James Bready; Danlin Chen; Deborah Choquette; Angela Coxon; Tom DeMelfi; Lucian DiPietro; Nicholas Doerr; Juan Estrada; Julie Flynn; Russell Graceffa; Shawn P. Harriman; Stephen Kaufman; Daniel S. La; Alexander M. Long; Matthew W. Martin; Sesha Neervannan; Vinod F. Patel; Michele Potashman; Kelly Regal; Phillip M. Roveto; Michael Schrag; Charlie Starnes; Andrew Tasker; Yohannes Teffera; Ling Wang

A series of naphthyl-based compounds were synthesized as potential inhibitors of vascular endothelial growth factor (VEGF) receptors. Investigations of structure-activity relationships led to the identification of a series of naphthamides that are potent inhibitors of the VEGF receptor tyrosine kinase family. Numerous analogues demonstrated low nanomolar inhibition of VEGF-dependent human umbilical vein endothelial cell (HUVEC) proliferation, and of these several compounds possessed favorable pharmacokinetic (PK) profiles. In particular, compound 48 demonstrated significant antitumor efficacy against established HT29 human colon adenocarcinoma xenografts implanted in athymic mice. A full account of the preparation, structure-activity relationships, pharmacokinetic properties, and pharmacology of analogues within this series is presented.


Journal of Medicinal Chemistry | 2008

Evaluation of a Series of Naphthamides as Potent, Orally Active Vascular Endothelial Growth Factor Receptor-2 Tyrosine Kinase Inhibitors¶

Matthew Weiss; Jean-Christophe Harmange; Anthony Polverino; David Bauer; Loren Berry; Virginia Berry; George Borg; James Bready; Danlin Chen; Deborah Choquette; Angela Coxon; Tom DeMelfi; Nicholas Doerr; Juan Estrada; Julie Flynn; Russell Graceffa; Shawn P. Harriman; Stephen Kaufman; Daniel S. La; Alexander M. Long; Sesha Neervannan; Vinod F. Patel; Michele Potashman; Kelly Regal; Phillip M. Roveto; Michael Schrag; Charlie Starnes; Andrew Tasker; Yohannes Teffera; Douglas A. Whittington

We have previously shown N-arylnaphthamides can be potent inhibitors of vascular endothelial growth factor receptors (VEGFRs). N-Alkyl and N-unsubstituted naphthamides were prepared and found to yield nanomolar inhibitors of VEGFR-2 (KDR) with an improved selectivity profile against a panel of tyrosine and serine/threonine kinases. The inhibitory activity of this series was retained at the cellular level. Naphthamides 3, 20, and 22 exhibited good pharmacokinetics following oral dosing and showed potent inhibition of VEGF-induced angiogenesis in the rat corneal model. Once-daily oral administration of 22 for 14 days led to 85% inhibition of established HT29 colon cancer and Calu-6 lung cancer xenografts at doses of 10 and 20 mg/kg, respectively.


Journal of Medicinal Chemistry | 2008

Novel 2,3-dihydro-1,4-benzoxazines as potent and orally bioavailable inhibitors of tumor-driven angiogenesis.

Daniel S. La; Julie Belzile; James Bready; Angela Coxon; Thomas DeMelfi; Nicholas Doerr; Juan Estrada; Julie Flynn; Shaun Flynn; Russell Graceffa; Shawn P. Harriman; Jay Larrow; Alexander M. Long; Matthew W. Martin; Michael J. Morrison; Vinod F. Patel; Philip Roveto; Ling Wang; Matthew Weiss; Douglas A. Whittington; Yohannes Teffera; Zhiyang Zhao; Anthony Polverino; Jean-Christophe Harmange

Angiogenesis is vital for solid tumor growth, and its prevention is a proven strategy for the treatment of disease states such as cancer. The vascular endothelial growth factor (VEGF) pathway provides several opportunities by which small molecules can act as inhibitors of endothelial proliferation and migration. Critical to these processes is signaling through VEGFR-2 or the kinase insert domain receptor (KDR) upon stimulation by its ligand VEGF. Herein, we report the discovery of 2,3-dihydro-1,4-benzoxazines as inhibitors of intrinsic KDR activity (IC 50 < 0.1 microM) and human umbilical vein endothelial cell (HUVEC) proliferation with IC 50 < 0.1 microM. More specifically, compound 16 was identified as a potent (KDR: < 1 nM and HUVEC: 4 nM) and selective inhibitor that exhibited efficacy in angiogenic in vivo models. In addition, this series of molecules is typically well-absorbed orally, further demonstrating the 2,3-dihydro-1,4-benzoxazine moiety as a promising platform for generating kinase-based antiangiogenic therapeutic agents.


Bioorganic & Medicinal Chemistry Letters | 2009

Pyridyl-pyrimidine benzimidazole derivatives as potent, selective, and orally bioavailable inhibitors of Tie-2 kinase.

Victor J. Cee; Alan C. Cheng; Karina Romero; Steve Bellon; Christopher Mohr; Douglas A. Whittington; Annette Bak; James Bready; Sean Caenepeel; Angela Coxon; Holly L. Deak; Jenne Fretland; Yan Gu; Brian L. Hodous; Xin Huang; Joseph L. Kim; Jasmine Lin; Alexander M. Long; Hanh Nho Nguyen; Philip R. Olivieri; Vinod F. Patel; Ling Wang; Yihong Zhou; Paul E. Hughes; Stephanie Geuns-Meyer

Selective small molecule inhibitors of Tie-2 kinase are important tools for the validation of Tie-2 signaling in pathological angiogenesis. Reported herein is the optimization of a nonselective scaffold into a potent and highly selective inhibitor of Tie-2 kinase.


Journal of Endocrinological Investigation | 2011

Anti-tumor activity of motesanib in a medullary thyroid cancer model

Angela Coxon; James Bready; Stephen Kaufman; Juan Estrada; Tao Osgood; Jude Canon; Ling Wang; Robert Radinsky; Rick Kendall; Paul E. Hughes; Anthony Polverino

Background: Medullary thyroid cancer (MTC) is frequently associated with mutations in the tyrosine kinase Ret and with increased expression of vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2). Motesanib is an investigational, orally administered small molecule antagonist of VEGFR1, 2, and 3; platelet-derived growth factor receptor (PDGFR); Kit; and possibly Ret. Aim: The aim of this study was to investigate the effects of motesanib on wild-type and mutant Ret activity in vitro and on tumor xenograft growth in a mouse model of MTC. Methods/Results: In cellular phosphorylation assays, motesanib inhibited the activity of wild-type Ret (IC50=66 nM), while it had limited activity against mutant Ret C634W (IC50=1100 nM) or Ret M918T (IC50>2500 nM). In vivo, motesanib significantly inhibited the growth of TT tumor cell xenografts (expressing Ret C634W) and significantly reduced tumor blood vessel area and tumor cell proliferation, compared with control. Treatment with motesanib resulted in substantial inhibition of Ret tyrosine phosphorylation in TT xenografts and, at comparable doses, in equivalent inhibition of VEGFR2 phosphorylation in both TT xenografts and in mouse lung tissue. Conclusions: The results of this study demonstrate that motesanib inhibited thyroid tumor xenograft growth predominantly through inhibition of angiogenesis and possibly via a direct inhibition of VEGFR2 and Ret expressed on tumor cells. These data suggest that targeting angiogenesis pathways and specifically the VEGF pathway may represent a novel therapeutic approach in the treatment of MTC.

Researchain Logo
Decentralizing Knowledge