Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James F. Bresch is active.

Publication


Featured researches published by James F. Bresch.


Monthly Weather Review | 2006

Comparison of Impacts of WRF Dynamic Core, Physics Package, and Initial Conditions on Warm Season Rainfall Forecasts

William A. Gallus; James F. Bresch

Abstract A series of simulations for 15 events occurring during August 2002 were performed using the Weather Research and Forecasting (WRF) model over a domain encompassing most of the central United States to compare the sensitivity of warm season rainfall forecasts with changes in model physics, dynamics, and initial conditions. Most simulations were run with 8-km grid spacing. The Advanced Research WRF (ARW) and the nonhydrostatic mesoscale model (NMM) dynamic cores were used. One physics package (denoted NCEP) used the Betts–Miller–Janjic convective scheme with the Mellor–Yamada–Janjic planetary boundary layer (PBL) scheme and GFDL radiation package; the other package (denoted NCAR) used the Kain–Fritsch convective scheme with the Yonsei University PBL scheme and the Dudhia rapid radiative transfer model radiation. Other physical schemes were the same (e.g., the Noah land surface model, Ferrier et al. microphysics) in all runs. Simulations suggest that the sensitivity of the model to changes in physic...


Proceedings of the National Academy of Sciences of the United States of America | 2013

Detection of iodine monoxide in the tropical free troposphere

B. Dix; Sunil Baidar; James F. Bresch; Samuel R. Hall; K. Sebastian Schmidt; Siyuan Wang; R. Volkamer

Atmospheric iodine monoxide (IO) is a radical that catalytically destroys heat trapping ozone and reacts further to form aerosols. Here, we report the detection of IO in the tropical free troposphere (FT). We present vertical profiles from airborne measurements over the Pacific Ocean that show significant IO up to 9.5 km altitude and locate, on average, two-thirds of the total column above the marine boundary layer. IO was observed in both recent deep convective outflow and aged free tropospheric air, suggesting a widespread abundance in the FT over tropical oceans. Our vertical profile measurements imply that most of the IO signal detected by satellites over tropical oceans could originate in the FT, which has implications for our understanding of iodine sources. Surprisingly, the IO concentration remains elevated in a transition layer that is decoupled from the ocean surface. This elevated concentration aloft is difficult to reconcile with our current understanding of iodine lifetimes and may indicate heterogeneous recycling of iodine from aerosols back to the gas phase. Chemical model simulations reveal that the iodine-induced ozone loss occurs mostly above the marine boundary layer (34%), in the transition layer (40%) and FT (26%) and accounts for up to 20% of the overall tropospheric ozone loss rate in the upper FT. Our results suggest that the halogen-driven ozone loss in the FT is currently underestimated. More research is needed to quantify the widespread impact that iodine species of marine origin have on free tropospheric composition, chemistry, and climate.


Bulletin of the American Meteorological Society | 2010

The Stratosphere–Troposphere Analyses of Regional Transport 2008 Experiment

Laura L. Pan; Kenneth P. Bowman; Elliot Atlas; S. C. Wofsy; Fuqing Zhang; James F. Bresch; B. A. Ridley; J. V. Pittman; Cameron R. Homeyer; Pavel Romashkin; William A. Cooper

The Stratosphere–Troposphere Analyses of Regional Transport 2008 (START08) experiment investigated a number of important processes in the extratropical upper troposphere and lower stratosphere (UTLS) using the National Science Foundation (NSF)–NCAR Gulfstream V (GV) research aircraft. The main objective was to examine the chemical structure of the extratropical UTLS in relation to dynamical processes spanning a range of scales. The campaign was conducted during April–June 2008 from Broomfield, Colorado. A total of 18 research flights sampled an extensive geographical region of North America (25°–65°N, 80°–120°W) and a wide range of meteorological conditions. The airborne in situ instruments measured a comprehensive suite of chemical constituents and microphysical variables from the boundary layer to the lower stratosphere, with flights specifically designed to target key transport processes in the extratropical UTLS. The flights successfully investigated stratosphere–troposphere exchange (STE) processes, ...


Monthly Weather Review | 2002

A Global Version of the PSU–NCAR Mesoscale Model

Jimy Dudhia; James F. Bresch

Abstract A global version of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (PSU–NCAR MM5) is described. The new model employs two polar stereographic projection domains centered on each pole. These domains interact at their equators, thereby eliminating the need for a lateral boundary condition file. This paper describes the method, and contrasts this fully compressible nonhydrostatic Eulerian global model with other global models. There are potential advantages over spherical polar grids in the resolution distribution and the treatment of curvature forces near the poles. The model also selectively damps acoustic modes, which appears to have some benefits in real-data initialization. The split-explicit time steps are different from the semi-implicit schemes used in several global nonhydrostatic models, and this localized scheme avoids the need for global elliptic solvers, making it particularly adept for distributed-memory platforms and the use...


Bulletin of the American Meteorological Society | 1997

Meteorological Conditions Associated with the ATR72 Aircraft Accident near Roselawn, Indiana, on 31 October 1994

J. Marwitz; M. Politovich; B. Bernstein; F. M. Ralph; Paul J. Neiman; R. Ashenden; James F. Bresch

An ATR72 commuter aircraft crashed near Roselawn, Indiana, on 31 October 1994 killing all 68 people on board. Available weather data, including those from a Next Generation Radar, a radar wind profiler, a Geostationary Operational Environmental Satellite, and pilot reports of icing have been examined in combination with analysis fields from the Rapid Update Cycle model and forecast fields from the Pennsylvania State University/National Center for Atmospheric Research MM5 numerical model. Synthesis of this information provides a relatively complete and consistent picture of the ambient meteorological conditions in the region of the ATR72 holding pattern at ~3.1 km above mean sea level. Of particular interest is the evidence that these conditions favored the development of supercooled drizzle drops within a strong frontal zone, as indicated by cloud-top temperatures of −10° to −15°C, weak radar reflectivity, and strong, vertical wind shear within the cloud and warm front.


Monthly Weather Review | 1991

Diagnosed Characteristics of Precipitation Systems over Taiwan during the May–June 1987 TAMEX

Richard H. Johnson; James F. Bresch

Abstract Characteristics of Mei-Yu precipitating cloud systems over Taiwan during the May–June 1987 Taiwan Area Mesoscale Experiment (TAMEX) have been studied using sounding, surface precipitation, and radar data. Vertical motion has been computed over the island at 6-h intervals from 13 May to 15 June using a modification of the kinematic method that takes into account the mountainous lower boundary within a four-station sounding polygon. Two primary characteristics of the precipitation have been found. First, the major rainfall event were linked to the passage of midlatitude disturbances and typically consisted of both deep convective and stratiform components. Deep convection was primarily prefrontal or frontal, while the stratiform precipitation was postfrontal, presumably in association with overrunning and orographic lifting. Second, there was a pronounced diurnal variability in the rainfall. Vertical motion, heating (Q1), and moistening (Q2) profiles have been used to define the character of the pr...


Monthly Weather Review | 1997

A Polar-Low Development over the Bering Sea: Analysis, Numerical Simulation, and Sensitivity Experiments

James F. Bresch; Richard J. Reed; Mark D. Albright

Abstract A polar low that developed over the western Bering Sea on 7 March 1977 and tracked across St. Paul Island is investigated using observations and the Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model Version 5 (MM5). A series of fine-mesh (20 km) simulations are performed in order to examine the structure of the cyclone and the airflow within it and to determine the physical processes important for its development. Observations show that the low formed near the ice edge in a region of moderate low-level baroclinicity and cold-air advection when an upper-level trough, or lobe of anomalously large potential vorticity (PV), broke off from a migratory, upper-level cold low over Siberia and advanced into the region. A full physics model experiment, initialized 24 h prior to the appearance of the polar low, produced a small, intense cyclone having characteristics similar to the observed low. The simulated low more closely resembled an extratropical cyclone than a typ...


Monthly Weather Review | 2003

Evaluating Mesoscale Model Predictions of Clouds and Radiation with SGP ARM Data over a Seasonal Timescale

Françoise Guichard; David B. Parsons; Jimy Dudhia; James F. Bresch

Abstract This study evaluates the predictions of radiative and cloud-related processes of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5). It is based on extensive comparison of three-dimensional forecast runs with local data from the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site collected at the Central Facility in Lamont, Oklahoma, over a seasonal timescale. Time series are built from simulations performed every day from 15 April to 23 June 1998 with a 10-km horizontal resolution. For the one single column centered on this site, a reasonable agreement is found between observed and simulated precipitation and surface fields time series. Indeed, the model is able to reproduce the timing and vertical extent of most major cloudy events, as revealed by radiative flux measurements, radar, and lidar data. The model encounters more difficulty with the prediction of cirrus and shallow clouds whereas deeper and...


Bulletin of the American Meteorological Society | 2017

The convective transport of active species in the tropics (Contrast) experiment

Laura L. Pan; E. Atlas; R. J. Salawitch; Shawn B. Honomichl; James F. Bresch; William J. Randel; Eric C. Apel; Rebecca S. Hornbrook; Andrew J. Weinheimer; Daniel C. Anderson; Stephen J. Andrews; Sunil Baidar; Stuart Beaton; Teresa L. Campos; Lucy J. Carpenter; Dexian Chen; B. Dix; Valeria Donets; Samuel R. Hall; T. F. Hanisco; Cameron R. Homeyer; L. G. Huey; Jorgen B. Jensen; Lisa Kaser; Douglas E. Kinnison; Theodore K. Koenig; Jean-Francois Lamarque; Chuntao Liu; Jiali Luo; Zhengzhao Johnny Luo

The Convective Transport of Active Species in the Tropics (CONTRAST) experiment was conducted from Guam (13.5° N, 144.8° E) during January-February 2014. Using the NSF/NCAR Gulfstream V research aircraft, the experiment investigated the photochemical environment over the tropical western Pacific (TWP) warm pool, a region of massive deep convection and the major pathway for air to enter the stratosphere during Northern Hemisphere (NH) winter. The new observations provide a wealth of information for quantifying the influence of convection on the vertical distributions of active species. The airborne in situ measurements up to 15 km altitude fill a significant gap by characterizing the abundance and altitude variation of a wide suite of trace gases. These measurements, together with observations of dynamical and microphysical parameters, provide significant new data for constraining and evaluating global chemistry climate models. Measurements include precursor and product gas species of reactive halogen compounds that impact ozone in the upper troposphere/lower stratosphere. High accuracy, in-situ measurements of ozone obtained during CONTRAST quantify ozone concentration profiles in the UT, where previous observations from balloon-borne ozonesondes were often near or below the limit of detection. CONTRAST was one of the three coordinated experiments to observe the TWP during January-February 2014. Together, CONTRAST, ATTREX and CAST, using complementary capabilities of the three aircraft platforms as well as ground-based instrumentation, provide a comprehensive quantification of the regional distribution and vertical structure of natural and pollutant trace gases in the TWP during NH winter, from the oceanic boundary to the lower stratosphere.


Nature Communications | 2016

A pervasive role for biomass burning in tropical high ozone/low water structures

Daniel C. Anderson; Julie M. Nicely; R. J. Salawitch; T. Canty; Russell R. Dickerson; T. F. Hanisco; Glenn M. Wolfe; Eric C. Apel; Elliot Atlas; Thomas J. Bannan; S. J.-B. Bauguitte; N. J. Blake; James F. Bresch; Teresa L. Campos; Lucy J. Carpenter; Mark Cohen; M. J. Evans; Rafael P. Fernandez; Brian H. Kahn; Douglas E. Kinnison; Samuel R. Hall; N. R. P. Harris; Rebecca S. Hornbrook; Jean-Francois Lamarque; Michael Le Breton; James Lee; Carl J. Percival; Leonhard Pfister; R. Bradley Pierce; Daniel D. Riemer

Air parcels with mixing ratios of high O3 and low H2O (HOLW) are common features in the tropical western Pacific (TWP) mid-troposphere (300–700 hPa). Here, using data collected during aircraft sampling of the TWP in winter 2014, we find strong, positive correlations of O3 with multiple biomass burning tracers in these HOLW structures. Ozone levels in these structures are about a factor of three larger than background. Models, satellite data and aircraft observations are used to show fires in tropical Africa and Southeast Asia are the dominant source of high O3 and that low H2O results from large-scale descent within the tropical troposphere. Previous explanations that attribute HOLW structures to transport from the stratosphere or mid-latitude troposphere are inconsistent with our observations. This study suggest a larger role for biomass burning in the radiative forcing of climate in the remote TWP than is commonly appreciated.

Collaboration


Dive into the James F. Bresch's collaboration.

Top Co-Authors

Avatar

Laura L. Pan

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Shawn B. Honomichl

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Eric C. Apel

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Rebecca S. Hornbrook

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Elmar R. Reiter

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samuel R. Hall

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Douglas E. Kinnison

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Francois Lamarque

National Center for Atmospheric Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge