Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James H. Bannock is active.

Publication


Featured researches published by James H. Bannock.


Energy and Environmental Science | 2013

On the role of intermixed phases in organic photovoltaic blends

Paul Westacott; John R. Tumbleston; Safa Shoaee; Sarah Fearn; James H. Bannock; James B. Gilchrist; Sandrine Heutz; John C. deMello; Martin Heeney; Harald Ade; James R. Durrant; David S. McPhail; Natalie Stingelin

Recently, an intermixed phase has been identified within organic photovoltaic (OPV) bulk heterojunction (BHJ) systems that can exist in addition to relatively phase-pure regions, highlighting the need for a refined picture of the solid-state microstructure of donor–acceptor blends and for gaining further understanding of the exact nature and role such intermixed phases play in such devices. Here we manipulate the microstructure of polymer–fullerene systems via processing means and the selection of the molecular weight of the donor polymer. This manipulation is used as a tool to vary the fraction of intermixed phase present and its effects on the structure and subsequently the opto-electronic processes. We find clear relationships between the state of mixing and amount of exciton quenching and number of polarons generated per absorbed photon. Furthermore, we observe that blend systems incorporating higher molecular weight polymer result in a greater yield of dissociated polarons, likely due to the increase of the intermixed fraction.


Nature Communications | 2014

Controlled multistep synthesis in a three-phase droplet reactor

Adrian M. Nightingale; Thomas W. Phillips; James H. Bannock; de Mello Jc

Channel-fouling is a pervasive problem in continuous flow chemistry, causing poor product control and reactor failure. Droplet chemistry, in which the reaction mixture flows as discrete droplets inside an immiscible carrier liquid, prevents fouling by isolating the reaction from the channel walls. Unfortunately, the difficulty of controllably adding new reagents to an existing droplet stream has largely restricted droplet chemistry to simple reactions in which all reagents are supplied at the time of droplet formation. Here we describe an effective method for repeatedly adding controlled quantities of reagents to droplets. The reagents are injected into a multiphase fluid stream, comprising the carrier liquid, droplets of the reaction mixture and an inert gas that maintains a uniform droplet spacing and suppresses new droplet formation. The method, which is suited to many multistep reactions, is applied to a five-stage quantum dot synthesis wherein particle growth is sustained by repeatedly adding fresh feedstock.


Journal of Materials Chemistry | 2013

Large-scale synthesis of nanocrystals in a multichannel droplet reactor

Adrian M. Nightingale; James H. Bannock; Siva H. Krishnadasan; Flannan T. F. O'Mahony; Saif A. Haque; Jeremy Sloan; Chris Drury; Robert McIntyre; John C. deMello

We report a multichannel microfluidic droplet reactor for the large-scale, high temperature synthesis of nanocrystals. The reactor was applied here to the production of CdTe, CdSe and alloyed CdSeTe nanocrystals, and found in all cases to provide high quality quantum dots with spectral properties that did not vary between channels or over time. One hour test runs yielded 3.7, 1.5 and 2.1 g of purified CdTe, CdSe and the alloy, respectively, using 0.4 M cadmium precursor solutions and carrier and reagent phase flow rates of 4 and 2 ml min−1. A further nine hour test-run applied to CdTe, utilizing increased carrier and reagent flow rates of 5 and 3 ml min−1, yielded 54.4 g of dry purified material, corresponding to a production rate of 145 g per day. The reactor architecture is inherently scalable and, with only minimal modifications, should allow for straightforward expansion to the kilogram-per-day production levels sought by industry.


Journal of Materials Chemistry C | 2015

Entanglements in marginal solutions: a means of tuning pre-aggregation of conjugated polymers with positive implications for charge transport

Hanlin Hu; Kui Zhao; Nikhil J. Fernandes; Pierre Boufflet; James H. Bannock; Liyang Yu; John C. de Mello; Natalie Stingelin; Martin Heeney; Emmanuel P. Giannelis; Aram Amassian

The solution-processing of conjugated polymers, just like commodity polymers, is subject to solvent and molecular weight-dependent solubility, interactions and chain entanglements within the polymer, all of which can influence the crystallization and microstructure development in semi-crystalline polymers and consequently affect charge transport and optoelectronic properties. Disentanglement of polymer chains in marginal solvents was reported to work via ultrasonication, facilitating the formation of photophysically ordered polymer aggregates. In this contribution, we explore how a wide range of technologically relevant solvents and formulations commonly used in organic electronics influence chain entanglement and the aggregation behaviour of P3HT using a combination of rheological and spectrophotometric measurements. The specific viscosity of the solution offers an excellent indication of the degree of entanglements in the solution, which is found to be related to the solubility of P3HT in a given solvent. Moreover, deliberately disentangling the solution in the presence of solvophobic driving forces, leads consistently to formation of photophysically visible aggregates which is indicative of local and perhaps long range order in the solute. We show for a broad range of solvents and molecular weights that disentanglement ultimately leads to significant ordering of the polymer in the solid state and a commensurate increase in charge transport properties. In doing so we demonstrate a remarkable ability to tune the microstructure which has important implications for transport properties. We discuss its potential implications in the context of organic electronics and photovoltaics.


Journal of the American Chemical Society | 2015

Direct correlation of charge transfer absorption with molecular donor:acceptor interfacial area via photothermal deflection spectroscopy

Ester Buchaca-Domingo; Koen Vandewal; Zhuping Fei; Scott E. Watkins; Fiona H. Scholes; James H. Bannock; John C. de Mello; Lee J. Richter; Dean M. DeLongchamp; Aram Amassian; Martin Heeney; Alberto Salleo; Natalie Stingelin

Here we show that the charge transfer (CT) absorption signal in bulk-heterojunction solar cell blends, measured by photothermal deflection spectroscopy, is directly proportional to the density of molecular donor:acceptor interfaces. Since the optical transitions from the ground state to the interfacial CT state are weakly allowed at photon energies below the optical gap of both the donor and acceptor, we can exploit the use of this sensitive linear absorption spectroscopy for such quantification. Moreover, we determine the absolute molar extinction coefficient of the CT transition for an archetypical polymer:fullerene interface. The latter is ∼100 times lower than the extinction coefficient of the donor chromophore involved, allowing us to experimentally estimate the transition dipole moment as 0.3 D and the electronic coupling between the ground and CT states to be on the order of 30 meV.


Scientific Reports | 2016

The influence of polymer purification on the efficiency of poly(3-hexylthiophene):fullerene organic solar cells

James H. Bannock; Neil D. Treat; Michael L. Chabinyc; Natalie Stingelin; Martin Heeney; John C. de Mello

We report the influence of different polymer purification procedures on the photovoltaic performance of bulk heterojunction solar cells formed from binary blends of poly(3-hexylthiophene) (P3HT) and fullerenes. Selective Soxhlet extractions and metal scavenging agents were used to remove residual monomer, magnesium salt by-products and catalyst from high-weight P3HT (Mw 121 kg/mol, PDI 1.8, RR 99%) synthesised by the Grignard metathesis (GRIM) polymerization route. Using phenyl-C61-butyric acid methyl ester (PC60BM) as an electron acceptor, we observed an increase in average power conversion efficiency from 2.3 to 4.8% in going from crude to fully purified material. Using indene-C60 bisadduct (IC60BA) in place of PC60BM, we observed a further increase to an average value of 6.6% - high for a bulk heterojunction formed from a binary blend of P3HT and C60 fullerene derivatives.


Journal of Materials Chemistry | 2017

Origin of fullerene-induced vitrification of fullerene:donor polymer photovoltaic blends and its impact on solar cell performance

Paul Westacott; Neil D. Treat; Jaime Martín; James H. Bannock; John C. de Mello; Michael L. Chabinyc; Alexander B. Sieval; Jasper J. Michels; Natalie Stingelin

Organic solar cell blends comprised of an electron donating polymer and electron accepting fullerene typically form upon solution casting a thin-film structure made up of a complex mixture of phases. These phases can vary greatly in: composition, order and thermodynamic stability; and they are dramatically influenced by the processing history. Understanding the processes that govern the formation of these phases and their subsequent effect on the efficiency of photo-generating and extracting charge carriers is of utmost importance to enable rational design and processing of these blends. Here we show that the vitrifying effect of three fullerene derivatives ([60]PCBM, bis[60]PCBM, and [60]ICBA) on the prototypical donor polymer (rr-P3HT) can dominate microstructure formation of fullerene/donor polymer blends cast from solution. Using a dynamic crystallization model based on an amalgamation of Flory–Huggins and Lauritzen–Hoffman theory coupled to solvent evaporation we demonstrate that this vitrification, which can result in a large fraction of highly intermixed amorphous solid solution of the fullerene and the polymer, is due to kinetic and thermodynamic reasons. The former is partly determined by the glass transition temperature of the individual components while donor polymer:fullerene miscibility, strongly influenced by the chemical nature of the donor and the fullerene and leading to thermodynamic mixing, dictates the second phenomena. We show that our approximate dynamic crystallization model assists understanding the different solid-state structure formation of rr-P3HT:fullerene blends. Due to the generality of the assumptions used, our model should be widely applicable and assist to capture the influence of the different vitrification mechanisms also of other photovoltaic blends, including the high-efficiency systems based on the strongly aggregating PCE11 (PffBT4T-2OD), which also feature clear signs of vitirfication upon blending with, e.g., [60]PCBM. Hence, our model will provide essential materials design criteria and enable identification of suitable processing guidelines for existing and new high-performing blends from the outset.


Materials horizons | 2014

Controlled synthesis of conjugated random copolymers in a droplet-based microreactor

James H. Bannock; Mohammed Al-Hashimi; Siva H. Krishnadasan; Jonathan Halls; Martin Heeney; John C. de Mello

We report the highly controlled synthesis of conjugated random copolymers in a droplet-based microfluidic reactor. Using two optically distinct polymers, poly(3-hexylthiophene) (P3HT) and poly(3-hexylselenophene) (P3HS), a series of highly regioregular random copolymers is generated with physical properties intermediate to those of the parent homopolymers. Analysis by 1H nuclear magnetic resonance spectroscopy reveals the co-polymerisation process to follow ideal Bernoullian behavior.


Journal of Materials Chemistry | 2014

A general mechanism for controlling thin film structures in all-conjugated block copolymer:fullerene blends

Rajeev Dattani; James H. Bannock; Zhuping Fei; Roderick C. I. MacKenzie; Anne A. Y. Guilbert; Michelle S. Vezie; Jenny Nelson; John C. de Mello; Martin Heeney; João T. Cabral; Alisyn J. Nedoma

Block copolymers have the potential to self-assemble into thermodynamically stable nanostructures that are desirable for plastic electronic materials with prolonged lifetimes. Fulfillment of this potential requires the simultaneous optimisation of the spatial organisation and phase behaviour of heterogeneous thin films at the nanoscale. We demonstrate the controlled assembly of an all-conjugated diblock copolymer blended with fullerene. The crystallinity, nanophase separated morphology, and microscopic features are characterised for blends of poly(3-hexylthiophene-block-3-(2-ethylhexyl) thiophene) (P3HT-b-P3EHT) and phenyl-C61-butyric acid methyl ester (PCBM), with PCBM fractions varying from 0–65 wt%. We find that PCBM induces the P3HT block to crystallise, causing nanophase separation of the block copolymer. Resulting nanostructures range from ordered (lamellae) to disordered, depending on the amount of PCBM. We identify the key design parameters and propose a general mechanism for controlling thin film structure and crystallinity during the processing of semicrystalline block copolymers.


Analytical Methods | 2013

Microscale separation of immiscible liquids using a porous capillary

James H. Bannock; Thomas W. Phillips; Adrian M. Nightingale; John C. deMello

We describe a simple method for the direct inline separation of two immiscible liquids based on the selective wetting and permeation of a porous polytetrafluoroethylene capillary by one of the liquids. Using water dispersed in fluorous carrier fluid as a test system, quantitative recovery of the water from the carrier fluid is achieved over a wide range of flow conditions, with no contamination by the fluorous component even when present in large (ten-fold) excess. The exiting water stream may be readily redispersed by injecting additional carrier fluid downstream, allowing for repeated switching between the segmented and continuous flow regimes – a critical requirement for multistep chemical processing. The separator is shown to simplify in-line sample analysis by allowing measurements to be carried out quasi-statically without the need for fast instrumentation synchronised to the segmented water flow.

Collaboration


Dive into the James H. Bannock's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natalie Stingelin

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge