Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James R. Eles is active.

Publication


Featured researches published by James R. Eles.


Advanced Functional Materials | 2018

A Materials Roadmap to Functional Neural Interface Design

Steven M. Wellman; James R. Eles; Kip A. Ludwig; John P. Seymour; Nicholas J. Michelson; William E. McFadden; Alberto L. Vazquez; Takashi D.Y. Kozai

Advancement in neurotechnologies for electrophysiology, neurochemical sensing, neuromodulation, and optogenetics are revolutionizing scientific understanding of the brain while enabling treatments, cures, and preventative measures for a variety of neurological disorders. The grand challenge in neural interface engineering is to seamlessly integrate the interface between neurobiology and engineered technology, to record from and modulate neurons over chronic timescales. However, the biological inflammatory response to implants, neural degeneration, and long-term material stability diminish the quality of interface overtime. Recent advances in functional materials have been aimed at engineering solutions for chronic neural interfaces. Yet, the development and deployment of neural interfaces designed from novel materials have introduced new challenges that have largely avoided being addressed. Many engineering efforts that solely focus on optimizing individual probe design parameters, such as softness or flexibility, downplay critical multi-dimensional interactions between different physical properties of the device that contribute to overall performance and biocompatibility. Moreover, the use of these new materials present substantial new difficulties that must be addressed before regulatory approval for use in human patients will be achievable. In this review, the interdependence of different electrode components are highlighted to demonstrate the current materials-based challenges facing the field of neural interface engineering.


Journal of Neuroscience Methods | 2016

Two-photon imaging of chronically implanted neural electrodes: Sealing methods and new insights.

Takashi D.Y. Kozai; James R. Eles; Alberto L. Vazquez; X. Tracy Cui

BACKGROUND Two-photon microscopy has enabled the visualization of dynamic tissue changes to injury and disease in vivo. While this technique has provided powerful new information, in vivo two-photon chronic imaging around tethered cortical implants, such as microelectrodes or neural probes, present unique challenges. NEW METHOD A number of strategies are described to prepare a cranial window to longitudinally observe the impact of neural probes on brain tissue and vasculature for up to 3 months. RESULTS It was found that silastic sealants limit cell infiltration into the craniotomy, thereby limiting light scattering and preserving window clarity over time. In contrast, low concentration hydrogel sealants failed to prevent cell infiltration and their use at high concentration displaced brain tissue and disrupted probe performance. COMPARISON WITH EXISTING METHOD(S) The use of silastic sealants allows for a suitable imaging window for long term chronic experiments and revealed new insights regarding the dynamic leukocyte response around implants and the nature of chronic BBB leakage in the sub-dural space. CONCLUSION The presented method provides a valuable tool for evaluating the chronic inflammatory response and the performance of emerging implantable neural technologies.


Journal of Neural Engineering | 2017

Multi-scale, multi-modal analysis uncovers complex relationship at the brain tissue-implant neural interface: new emphasis on the biological interface

Nicholas J. Michelson; Alberto L. Vazquez; James R. Eles; Joseph W. Salatino; Erin K. Purcell; Jordan Williams; Tracy Cui; Takashi D.Y. Kozai

OBJECTIVE Implantable neural electrode devices are important tools for neuroscience research and have an increasing range of clinical applications. However, the intricacies of the biological response after implantation, and their ultimate impact on recording performance, remain challenging to elucidate. Establishing a relationship between the neurobiology and chronic recording performance is confounded by technical challenges related to traditional electrophysiological, material, and histological limitations. This can greatly impact the interpretations of results pertaining to device performance and tissue health surrounding the implant. APPROACH In this work, electrophysiological activity and immunohistological analysis are compared after controlling for motion artifacts, quiescent neuronal activity, and material failure of devices in order to better understand the relationship between histology and electrophysiological outcomes. MAIN RESULTS Even after carefully accounting for these factors, the presence of viable neurons and lack of glial scarring does not convey single unit recording performance. SIGNIFICANCE To better understand the biological factors influencing neural activity, detailed cellular and molecular tissue responses were examined. Decreases in neural activity and blood oxygenation in the tissue surrounding the implant, shift in expression levels of vesicular transporter proteins and ion channels, axon and myelin injury, and interrupted blood flow in nearby capillaries can impact neural activity around implanted neural interfaces. Combined, these tissue changes highlight the need for more comprehensive, basic science research to elucidate the relationship between biology and chronic electrophysiology performance in order to advance neural technologies.


Biomaterials | 2018

Unique electrophysiological and impedance signatures between encapsulation types: An analysis of biological Utah array failure and benefit of a biomimetic coating in a rat model

Patrick A. Cody; James R. Eles; Carl F. Lagenaur; Takashi D.Y. Kozai; X. Tracy Cui

Intracortical microelectrode arrays, especially the Utah array, remain the most common choice for obtaining high dimensional recordings of spiking neural activity for brain computer interface and basic neuroscience research. Despite the widespread use and established design, mechanical, material and biological challenges persist that contribute to a steady decline in recording performance (as evidenced by both diminished signal amplitude and recorded cell population over time) or outright array failure. Device implantation injury causes acute cell death and activation of inflammatory microglia and astrocytes that leads to a chronic neurodegeneration and inflammatory glial aggregation around the electrode shanks and often times fibrous tissue growth above the pia along the bed of the array within the meninges. This multifaceted deleterious cascade can result in substantial variability in performance even under the same experimental conditions. We track both impedance signatures and electrophysiological performance of 4 × 4 floating microelectrode Utah arrays implanted in the primary monocular visual cortex (V1m) of Long-Evans rats over a 12-week period. We employ a repeatable visual stimulation method to compare signal-to-noise ratio as well as single- and multi-unit yield from weekly recordings. To explain signal variability with biological response, we compare arrays categorized as either Type 1, partial fibrous encapsulation, or Type 2, complete fibrous encapsulation and demonstrate performance and impedance signatures unique to encapsulation type. We additionally assess benefits of a biomolecule coating intended to minimize distance to recordable units and observe a temporary improvement on multi-unit recording yield and single-unit amplitude.


Journal of Neural Engineering | 2016

Histological evaluation of a chronically-implanted electrocorticographic electrode grid in a non-human primate

Alan D. Degenhart; James R. Eles; Richard P. Dum; Jessica L Mischel; Ivan Smalianchuk; Bridget M. Endler; Robin C. Ashmore; Elizabeth C. Tyler-Kabara; Nicholas G. Hatsopoulos; Wei Wang; Aaron P. Batista; X. Tracy Cui

OBJECTIVE Electrocorticography (ECoG), used as a neural recording modality for brain-machine interfaces (BMIs), potentially allows for field potentials to be recorded from the surface of the cerebral cortex for long durations without suffering the host-tissue reaction to the extent that it is common with intracortical microelectrodes. Though the stability of signals obtained from chronically implanted ECoG electrodes has begun receiving attention, to date little work has characterized the effects of long-term implantation of ECoG electrodes on underlying cortical tissue. APPROACH We implanted and recorded from a high-density ECoG electrode grid subdurally over cortical motor areas of a Rhesus macaque for 666 d. MAIN RESULTS Histological analysis revealed minimal damage to the cortex underneath the implant, though the grid itself was encapsulated in collagenous tissue. We observed macrophages and foreign body giant cells at the tissue-array interface, indicative of a stereotypical foreign body response. Despite this encapsulation, cortical modulation during reaching movements was observed more than 18 months post-implantation. SIGNIFICANCE These results suggest that ECoG may provide a means by which stable chronic cortical recordings can be obtained with comparatively little tissue damage, facilitating the development of clinically viable BMI systems.


Journal of Materials Chemistry B | 2017

Aptamer-functionalized neural recording electrodes for the direct measurement of cocaine in vivo

I. Mitch Taylor; Zhanhong Du; Emma T. Bigelow; James R. Eles; Anthony R. Horner; Kasey Catt; Stephen G. Weber; Brian G. Jamieson; X. Tracy Cui

Cocaine is a highly addictive psychostimulant that acts through competitive inhibition of the dopamine transporter. In order to fully understand the region specific neuropathology of cocaine abuse and addiction, it is unequivocally necessary to develop cocaine sensing technology capable of directly measuring real-time cocaine transient events local to different brain regions throughout the pharmacokinetic time course of exposure. We have developed an electrochemical aptamer-based in vivo cocaine sensor on a silicon based neural recording probe platform capable of directly measuring cocaine from discrete brain locations using square wave voltammetry (SWV). The sensitivity of the sensor for cocaine follows a modified exponential Langmuir model relationship and complete aptamer-target binding occurs in < 2 sec and unbinding in < 4 sec. The resulting temporal resolution is a 75X increase from traditional microdialysis sampling methods. When implanted in the rat dorsal striatum, the cocaine sensor exhibits stable SWV signal drift (modeled using a logarithmic exponential equation) and is capable of measuring real-time in vivo response to repeated local cocaine infusion as well as systemic IV cocaine injection. The in vivo sensor is capable of obtaining reproducible measurements over a period approaching 3 hours, after which signal amplitude significantly decreases likely due to tissue encapsulation. Finally, aptamer functionalized neural recording probes successfully detect spontaneous and evoked neural activity in the brain. This dual functionality makes the cocaine sensor a powerful tool capable of monitoring both biochemical and electrophysiological signals with high spatial and temporal resolution.


Biotechnology and Bioengineering | 2018

Hierarchically aligned fibrous hydrogel films through microfluidic self-assembly of graphene and polysaccharides: PATEL et al.

Akhil Patel; Yingfei Xue; Rebecca Hartley; Vinayak Sant; James R. Eles; Xinyan Tracy Cui; Donna B. Stolz; Shilpa Sant

Despite significant interest in developing extracellular matrix (ECM)‐inspired biomaterials to recreate native cell‐instructive microenvironments, the major challenge in the biomaterial field is to recapitulate the complex structural and biophysical features of native ECM. These biophysical features include multiscale hierarchy, electrical conductivity, optimum wettability, and mechanical properties. These features are critical to the design of cell‐instructive biomaterials for bioengineering applications such as skeletal muscle tissue engineering. In this study, we used a custom‐designed film fabrication assembly, which consists of a microfluidic chamber to allow electrostatic charge‐based self‐assembly of oppositely charged polymer solutions forming a hydrogel fiber and eventually, a nanocomposite fibrous hydrogel film. The film recapitulates unidirectional hierarchical fibrous structure along with the conductive properties to guide initial alignment and myotube formation from cultured myoblasts. We combined high conductivity, and charge carrier mobility of graphene with biocompatibility of polysaccharides to develop graphene–polysaccharide nanocomposite fibrous hydrogel films. The incorporation of graphene in fibrous hydrogel films enhanced their wettability, electrical conductivity, tensile strength, and toughness without significantly altering their elastic properties (Youngs modulus). In a proof‐of‐concept study, the mouse myoblast cells (C2C12) seeded on these nanocomposite fibrous hydrogel films showed improved spreading and enhanced myogenesis as evident by the formation of multinucleated myotubes, an early indicator of myogenesis. Overall, graphene–polysaccharide nanocomposite fibrous hydrogel films provide a potential biomaterial to promote skeletal muscle tissue regeneration.


Biomaterials | 2017

Neuroadhesive L1 coating attenuates acute microglial attachment to neural electrodes as revealed by live two-photon microscopy

James R. Eles; Alberto L. Vazquez; Carl F. Lagenaur; Matthew C. Murphy; Takashi D.Y. Kozai; X. Tracy Cui


Journal of Nanobiotechnology | 2018

ROS responsive resveratrol delivery from LDLR peptide conjugated PLA-coated mesoporous silica nanoparticles across the blood–brain barrier

Yang Shen; Bin Cao; Kevin Woeppel; James R. Eles; Xinyan Tracy Cui


Archive | 2017

ANTIOXIDANT COMPOUNDS AND THEIR USE

Xinyan Tracy Cui; Kasey Catt; James R. Eles

Collaboration


Dive into the James R. Eles's collaboration.

Top Co-Authors

Avatar

X. Tracy Cui

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kasey Catt

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge