Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where X. Tracy Cui is active.

Publication


Featured researches published by X. Tracy Cui.


Neuron | 2006

Brain-Controlled Interfaces: Movement Restoration with Neural Prosthetics

Andrew B. Schwartz; X. Tracy Cui; Douglas J. Weber; Daniel W. Moran

Brain-controlled interfaces are devices that capture brain transmissions involved in a subjects intention to act, with the potential to restore communication and movement to those who are immobilized. Current devices record electrical activity from the scalp, on the surface of the brain, and within the cerebral cortex. These signals are being translated to command signals driving prosthetic limbs and computer displays. Somatosensory feedback is being added to this control as generated behaviors become more complex. New technology to engineer the tissue-electrode interface, electrode design, and extraction algorithms to transform the recorded signal to movement will help translate exciting laboratory demonstrations to patient practice in the near future.


ACS Chemical Neuroscience | 2015

Brain tissue responses to neural implants impact signal sensitivity and intervention strategies.

Takashi D.Y. Kozai; Andrea Jaquins-Gerstl; Alberto L. Vazquez; Adrian C. Michael; X. Tracy Cui

Implantable biosensors are valuable scientific tools for basic neuroscience research and clinical applications. Neurotechnologies provide direct readouts of neurological signal and neurochemical processes. These tools are generally most valuable when performance capacities extend over months and years to facilitate the study of memory, plasticity, and behavior or to monitor patients’ conditions. These needs have generated a variety of device designs from microelectrodes for fast scan cyclic voltammetry (FSCV) and electrophysiology to microdialysis probes for sampling and detecting various neurochemicals. Regardless of the technology used, the breaching of the blood–brain barrier (BBB) to insert devices triggers a cascade of biochemical pathways resulting in complex molecular and cellular responses to implanted devices. Molecular and cellular changes in the microenvironment surrounding an implant include the introduction of mechanical strain, activation of glial cells, loss of perfusion, secondary metabolic injury, and neuronal degeneration. Changes to the tissue microenvironment surrounding the device can dramatically impact electrochemical and electrophysiological signal sensitivity and stability over time. This review summarizes the magnitude, variability, and time course of the dynamic molecular and cellular level neural tissue responses induced by state-of-the-art implantable devices. Studies show that insertion injuries and foreign body response can impact signal quality across all implanted central nervous system (CNS) sensors to varying degrees over both acute (seconds to minutes) and chronic periods (weeks to months). Understanding the underlying biological processes behind the brain tissue response to the devices at the cellular and molecular level leads to a variety of intervention strategies for improving signal sensitivity and longevity.


Journal of Neural Engineering | 2012

In vivo two-photon microscopy reveals immediate microglial reaction to implantation of microelectrode through extension of processes

Takashi D.Y. Kozai; Alberto L. Vazquez; Cassandra L. Weaver; Seong-Gi Kim; X. Tracy Cui

OBJECTIVE Penetrating cortical neural probe technologies allow investigators to record electrical signals in the brain. Implantation of probes results in acute tissue damage, and microglia density increases around implanted devices over weeks. However, the mechanisms underlying this encapsulation are not well understood in the acute temporal domain. The objective here was to evaluate dynamic microglial response to implanted probes using two-photon microscopy. APPROACH Using two-photon in vivo microscopy, cortical microglia ∼200 µm below the surface of the visual cortex were imaged every minute in mice with green fluorescent protein-expressing microglia. MAIN RESULTS Following probe insertion, nearby microglia immediately extended processes toward the probe at (1.6 ± 1.3) µm min(-1) during the first 30-45 min, but showed negligible cell body movement for the first 6 h. Six hours following probe insertion, microglia at distances <130.0 µm (p = 0.5) from the probe surface exhibit morphological characteristics of transitional stage (T-stage) activation, similar to the microglial response observed with laser-induced blood-brain barrier damage. T-stage morphology and microglia directionality indexes were developed to characterize microglial response to implanted probes. Evidence suggesting vascular reorganization after probe insertion and distant vessel damage was also observed hours after probe insertion. SIGNIFICANCE A precise temporal understanding of the cellular response to microelectrode implantation will facilitate the search for molecular cues initiating and attenuating the reactive tissue response.


Biomaterials | 2015

Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording

Takashi D.Y. Kozai; Kasey Catt; Xia Li; Zhannetta V. Gugel; Valur Olafsson; Alberto L. Vazquez; X. Tracy Cui

Penetrating intracortical electrode arrays that record brain activity longitudinally are powerful tools for basic neuroscience research and emerging clinical applications. However, regardless of the technology used, signals recorded by these electrodes degrade over time. The failure mechanisms of these electrodes are understood to be a complex combination of the biological reactive tissue response and material failure of the device over time. While mechanical mismatch between the brain tissue and implanted neural electrodes have been studied as a source of chronic inflammation and performance degradation, the electrode failure caused by mechanical mismatch between different material properties and different structural components within a device have remained poorly characterized. Using Finite Element Model (FEM) we simulate the mechanical strain on a planar silicon electrode. The results presented here demonstrate that mechanical mismatch between iridium and silicon leads to concentrated strain along the border of the two materials. This strain is further focused on small protrusions such as the electrical traces in planar silicon electrodes. These findings are confirmed with chronic in vivo data (133-189 days) in mice by correlating a combination of single-unit electrophysiology, evoked multi-unit recordings, electrochemical impedance spectroscopy, and scanning electron microscopy from traces and electrode sites with our modeling data. Several modes of mechanical failure of chronically implanted planar silicon electrodes are found that result in degradation and/or loss of recording. These findings highlight the importance of strains and material properties of various subcomponents within an electrode array.


Biomaterials | 2014

Chronic tissue response to carboxymethyl cellulose based dissolvable insertion needle for ultra-small neural probes.

Takashi D.Y. Kozai; Zhannetta V. Gugel; Xia Li; Peter J. Gilgunn; Rakesh Khilwani; O. Burak Ozdoganlar; Gary K. Fedder; Douglas J. Weber; X. Tracy Cui

Implantable neural electrodes must drastically improve chronic recording stability before they can be translated into long-term human clinical prosthetics. Previous studies suggest that sub-cellular sized and mechanically compliant probes may result in improved tissue integration and recording longevity. However, currently these design features are restricted by the opposing mechanical requirements needed for minimally damaging insertions. We designed a non-cytotoxic, carboxymethylcellulose (CMC) based dissolvable delivery vehicle (shuttle) to provide the mechanical support for insertion of ultra-small, ultra-compliant microfabricated neural probes. Stiff CMC-based shuttles rapidly soften immediately after being placed ∼1 mm above an open craniotomy as they absorb vapors from the brain. To address this, we developed a sophisticated targeting, high speed insertion (∼80 mm/s), and release system to implant these shuttles. After implantation, the goal is for the shuttle to dissolve away leaving only the electrodes behind. Here we show the histology of chronically implanted shuttles of large (300 μm × 125 μm) and small (100 μm × 125 μm) size at discrete time points over 12 weeks. Early time points show the CMC shuttle expanded after insertion as it absorbed moisture from the brain and slowly dissolved. At later time points neuronal cell bodies populate regions within the original shuttle tract. The large CMC shuttles show that the CMC expansion can cause extended secondary damage. On the other hand, the smaller CMC shuttles show limited secondary damage, wound closure by 4 weeks, absence of activated microglia at 12 weeks, as well as evidence suggesting neural regeneration at the implant site. This shuttle, therefore, shows great promise facilitating the implantation of nontraditional ultra-small, and ultra-compliant probes.


Journal of Neuroscience Methods | 2015

Comprehensive chronic laminar single-unit, multi-unit, and local field potential recording performance with planar single shank electrode arrays

Takashi D.Y. Kozai; Zhanhong Du; Zhannetta V. Gugel; Matthew A. Smith; Steven M. Chase; Lance Bodily; Ellen Caparosa; Robert M. Friedlander; X. Tracy Cui

BACKGROUND Intracortical electrode arrays that can record extracellular action potentials from small, targeted groups of neurons are critical for basic neuroscience research and emerging clinical applications. In general, these electrode devices suffer from reliability and variability issues, which have led to comparative studies of existing and emerging electrode designs to optimize performance. Comparisons of different chronic recording devices have been limited to single-unit (SU) activity and employed a bulk averaging approach treating brain architecture as homogeneous with respect to electrode distribution. NEW METHOD In this study, we optimize the methods and parameters to quantify evoked multi-unit (MU) and local field potential (LFP) recordings in eight mice visual cortices. RESULTS These findings quantify the large recording differences stemming from anatomical differences in depth and the layer dependent relative changes to SU and MU recording performance over 6-months. For example, performance metrics in Layer V and stratum pyramidale were initially higher than Layer II/III, but decrease more rapidly. On the other hand, Layer II/III maintained recording metrics longer. In addition, chronic changes at the level of layer IV are evaluated using visually evoked current source density. COMPARISON WITH EXISTING METHOD(S) The use of MU and LFP activity for evaluation and tracking biological depth provides a more comprehensive characterization of the electrophysiological performance landscape of microelectrodes. CONCLUSIONS A more extensive spatial and temporal insight into the chronic electrophysiological performance over time will help uncover the biological and mechanical failure mechanisms of the neural electrodes and direct future research toward the elucidation of design optimization for specific applications.


Journal of Neural Engineering | 2015

Evaluation of poly(3,4- ethylenedioxythiophene)/carbon nanotube neural electrode coatings for stimulation in the dorsal root ganglion

Christi Kolarcik; Kasey Catt; Erika Rost; Ingrid N Albrecht; Dennis Bourbeau; Zhanhong Du; Takashi D.Y. Kozai; Xiliang Luo; Douglas J. Weber; X. Tracy Cui

OBJECTIVE The dorsal root ganglion is an attractive target for implanting neural electrode arrays that restore sensory function or provide therapy via stimulation. However, penetrating microelectrodes designed for these applications are small and deliver low currents. For long-term performance of microstimulation devices, novel coating materials are needed in part to decrease impedance values at the electrode-tissue interface and to increase charge storage capacity. APPROACH Conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and multi-wall carbon nanotubes (CNTs) were coated on the electrode surface and doped with the anti-inflammatory drug, dexamethasone. Electrode characteristics and the tissue reaction around neural electrodes as a result of stimulation, coating and drug release were characterized. Hematoxylin and eosin staining along with antibodies recognizing Iba1 (microglia/macrophages), NF200 (neuronal axons), NeuN (neurons), vimentin (fibroblasts), caspase-3 (cell death) and L1 (neural cell adhesion molecule) were used. Quantitative image analyses were performed using MATLAB. MAIN RESULTS Our results indicate that coated microelectrodes have lower in vitro and in vivo impedance values. Significantly less neuronal death/damage was observed with coated electrodes as compared to non-coated controls. The inflammatory response with the PEDOT/CNT-coated electrodes was also reduced. SIGNIFICANCE This study is the first to report on the utility of these coatings in stimulation applications. Our results indicate PEDOT/CNT coatings may be valuable additions to implantable electrodes used as therapeutic modalities.


Biosensors | 2015

In Vivo Electrochemical Analysis of a PEDOT/MWCNT Neural Electrode Coating

Nicolas A. Alba; Zhanhong J. Du; Kasey Catt; Takashi D.Y. Kozai; X. Tracy Cui

Neural electrodes hold tremendous potential for improving understanding of brain function and restoring lost neurological functions. Multi-walled carbon nanotube (MWCNT) and dexamethasone (Dex)-doped poly(3,4-ethylenedioxythiophene) (PEDOT) coatings have shown promise to improve chronic neural electrode performance. Here, we employ electrochemical techniques to characterize the coating in vivo. Coated and uncoated electrode arrays were implanted into rat visual cortex and subjected to daily cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) for 11 days. Coated electrodes experienced a significant decrease in 1 kHz impedance within the first two days of implantation followed by an increase between days 4 and 7. Equivalent circuit analysis showed that the impedance increase is the result of surface capacitance reduction, likely due to protein and cellular processes encapsulating the porous coating. Coating’s charge storage capacity remained consistently higher than uncoated electrodes, demonstrating its in vivo electrochemical stability. To decouple the PEDOT/MWCNT material property changes from the tissue response, in vitro characterization was conducted by soaking the coated electrodes in PBS for 11 days. Some coated electrodes exhibited steady impedance while others exhibiting large increases associated with large decreases in charge storage capacity suggesting delamination in PBS. This was not observed in vivo, as scanning electron microscopy of explants verified the integrity of the coating with no sign of delamination or cracking. Despite the impedance increase, coated electrodes successfully recorded neural activity throughout the implantation period.


Journal of Neuroscience Methods | 2016

Two-photon imaging of chronically implanted neural electrodes: Sealing methods and new insights.

Takashi D.Y. Kozai; James R. Eles; Alberto L. Vazquez; X. Tracy Cui

BACKGROUND Two-photon microscopy has enabled the visualization of dynamic tissue changes to injury and disease in vivo. While this technique has provided powerful new information, in vivo two-photon chronic imaging around tethered cortical implants, such as microelectrodes or neural probes, present unique challenges. NEW METHOD A number of strategies are described to prepare a cranial window to longitudinally observe the impact of neural probes on brain tissue and vasculature for up to 3 months. RESULTS It was found that silastic sealants limit cell infiltration into the craniotomy, thereby limiting light scattering and preserving window clarity over time. In contrast, low concentration hydrogel sealants failed to prevent cell infiltration and their use at high concentration displaced brain tissue and disrupted probe performance. COMPARISON WITH EXISTING METHOD(S) The use of silastic sealants allows for a suitable imaging window for long term chronic experiments and revealed new insights regarding the dynamic leukocyte response around implants and the nature of chronic BBB leakage in the sub-dural space. CONCLUSION The presented method provides a valuable tool for evaluating the chronic inflammatory response and the performance of emerging implantable neural technologies.


Acta Biomaterialia | 2017

Ultrasoft microwire neural electrodes improve chronic tissue integration

Zhanhong Jeff Du; Christi Kolarcik; Takashi D.Y. Kozai; Silvia Luebben; Shawn A. Sapp; Xin Sally Zheng; James A. Nabity; X. Tracy Cui

Chronically implanted neural multi-electrode arrays (MEA) are an essential technology for recording electrical signals from neurons and/or modulating neural activity through stimulation. However, current MEAs, regardless of the type, elicit an inflammatory response that ultimately leads to device failure. Traditionally, rigid materials like tungsten and silicon have been employed to interface with the relatively soft neural tissue. The large stiffness mismatch is thought to exacerbate the inflammatory response. In order to minimize the disparity between the device and the brain, we fabricated novel ultrasoft electrodes consisting of elastomers and conducting polymers with mechanical properties much more similar to those of brain tissue than previous neural implants. In this study, these ultrasoft microelectrodes were inserted and released using a stainless steel shuttle with polyethyleneglycol (PEG) glue. The implanted microwires showed functionality in acute neural stimulation. When implanted for 1 or 8weeks, the novel soft implants demonstrated significantly reduced inflammatory tissue response at week 8 compared to tungsten wires of similar dimension and surface chemistry. Furthermore, a higher degree of cell body distortion was found next to the tungsten implants compared to the polymer implants. Our results support the use of these novel ultrasoft electrodes for long term neural implants. STATEMENT OF SIGNIFICANCE One critical challenge to the translation of neural recording/stimulation electrode technology to clinically viable devices for brain computer interface (BCI) or deep brain stimulation (DBS) applications is the chronic degradation of device performance due to the inflammatory tissue reaction. While many hypothesize that soft and flexible devices elicit reduced inflammatory tissue responses, there has yet to be a rigorous comparison between soft and stiff implants. We have developed an ultra-soft microelectrode with Youngs modulus lower than 1MPa, closely mimicking the brain tissue modulus. Here, we present a rigorous histological comparison of this novel ultrasoft electrode and conventional stiff electrode with the same size, shape and surface chemistry, implanted in rat brains for 1-week and 8-weeks. Significant improvement was observed for ultrasoft electrodes, including inflammatory tissue reaction, electrode-tissue integration as well as mechanical disturbance to nearby neurons. A full spectrum of new techniques were developed in this study, from insertion shuttle to in situ sectioning of the microelectrode to automated cell shape analysis, all of which should contribute new methods to the field. Finally, we showed the electrical functionality of the ultrasoft electrode, demonstrating the potential of flexible neural implant devices for future research and clinical use.

Collaboration


Dive into the X. Tracy Cui's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kasey Catt

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James R. Eles

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Zhanhong Du

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary K. Fedder

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge