Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takashi D.Y. Kozai is active.

Publication


Featured researches published by Takashi D.Y. Kozai.


Nature Materials | 2012

Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces

Takashi D.Y. Kozai; Nicholas B. Langhals; Paras R. Patel; Xiaopei Deng; Huanan Zhang; Karen L. Smith; Joerg Lahann; Nicholas A. Kotov; Daryl R. Kipke

Implantable neural microelectrodes that can record extracellular biopotentials from small, targeted groups of neurons are critical for neuroscience research and emerging clinical applications including brain-controlled prosthetic devices. The crucial material-dependent problem is developing microelectrodes that record neural activity from the same neurons for years with high fidelity and reliability. Here, we report the development of an integrated composite electrode consisting of a carbon-fibre core, a poly(p-xylylene)-based thin-film coating that acts as a dielectric barrier and that is functionalized to control intrinsic biological processes, and a poly(thiophene)-based recording pad. The resulting implants are an order of magnitude smaller than traditional recording electrodes, and more mechanically compliant with brain tissue. They were found to elicit much reduced chronic reactive tissue responses and enabled single-neuron recording in acute and early chronic experiments in rats. This technology, taking advantage of new composites, makes possible highly selective and stealthy neural interface devices towards realizing long-lasting implants.


Journal of Neuroscience Methods | 2009

Insertion shuttle with carboxyl terminated self-assembled monolayer coatings for implanting flexible polymer neural probes in the brain

Takashi D.Y. Kozai; Daryl R. Kipke

Penetrating microscale microelectrodes made from flexible polymers tend to bend or deflect and may fail to reach their target location. The development of flexible neural probes requires methods for reliable and controlled insertion into the brain. Previous approaches for implanting flexible probes into the cortex required modifications that negate the flexibility, limit the functionality, or restrict the design of the probe. This study investigated the use of an electronegative self-assembled monolayer (SAM) as a coating on a stiff insertion shuttle to carry a polymer probe into the cerebral cortex, and then the detachment of the shuttle from the probe by altering the shuttles hydrophobicity. Polydimethylsiloxane (PDMS) and polyimide probes were inserted into an agarose in vitro brain model using silicon insertion shuttles. The silicon shuttles were coated with a carboxyl terminal SAM. The precision of insertion using the shuttle was measured by the percentage displacement of the probe upon shuttle removal after the probe was fully inserted. The average relative displacement of polyimide probes inserted with SAM-coated shuttles was (1.0+/-0.66)% of the total insertion depth compared to (26.5+/-3.7)% for uncoated silicon shuttles. The average relative displacement of PDMS probes was (2.1+/-1.1)% of the insertion depth compared to 100% (complete removal) for uncoated silicon shuttles. SAM-coated shuttles were further validated through their use to reliably insert PDMS probes in the cerebral cortex of rodents. This study found that SAM-coated silicon shuttles are a viable method for accurately and precisely inserting flexible neural probes in the brain.


ACS Chemical Neuroscience | 2015

Brain tissue responses to neural implants impact signal sensitivity and intervention strategies.

Takashi D.Y. Kozai; Andrea Jaquins-Gerstl; Alberto L. Vazquez; Adrian C. Michael; X. Tracy Cui

Implantable biosensors are valuable scientific tools for basic neuroscience research and clinical applications. Neurotechnologies provide direct readouts of neurological signal and neurochemical processes. These tools are generally most valuable when performance capacities extend over months and years to facilitate the study of memory, plasticity, and behavior or to monitor patients’ conditions. These needs have generated a variety of device designs from microelectrodes for fast scan cyclic voltammetry (FSCV) and electrophysiology to microdialysis probes for sampling and detecting various neurochemicals. Regardless of the technology used, the breaching of the blood–brain barrier (BBB) to insert devices triggers a cascade of biochemical pathways resulting in complex molecular and cellular responses to implanted devices. Molecular and cellular changes in the microenvironment surrounding an implant include the introduction of mechanical strain, activation of glial cells, loss of perfusion, secondary metabolic injury, and neuronal degeneration. Changes to the tissue microenvironment surrounding the device can dramatically impact electrochemical and electrophysiological signal sensitivity and stability over time. This review summarizes the magnitude, variability, and time course of the dynamic molecular and cellular level neural tissue responses induced by state-of-the-art implantable devices. Studies show that insertion injuries and foreign body response can impact signal quality across all implanted central nervous system (CNS) sensors to varying degrees over both acute (seconds to minutes) and chronic periods (weeks to months). Understanding the underlying biological processes behind the brain tissue response to the devices at the cellular and molecular level leads to a variety of intervention strategies for improving signal sensitivity and longevity.


Journal of Neural Engineering | 2012

In vivo two-photon microscopy reveals immediate microglial reaction to implantation of microelectrode through extension of processes

Takashi D.Y. Kozai; Alberto L. Vazquez; Cassandra L. Weaver; Seong-Gi Kim; X. Tracy Cui

OBJECTIVE Penetrating cortical neural probe technologies allow investigators to record electrical signals in the brain. Implantation of probes results in acute tissue damage, and microglia density increases around implanted devices over weeks. However, the mechanisms underlying this encapsulation are not well understood in the acute temporal domain. The objective here was to evaluate dynamic microglial response to implanted probes using two-photon microscopy. APPROACH Using two-photon in vivo microscopy, cortical microglia ∼200 µm below the surface of the visual cortex were imaged every minute in mice with green fluorescent protein-expressing microglia. MAIN RESULTS Following probe insertion, nearby microglia immediately extended processes toward the probe at (1.6 ± 1.3) µm min(-1) during the first 30-45 min, but showed negligible cell body movement for the first 6 h. Six hours following probe insertion, microglia at distances <130.0 µm (p = 0.5) from the probe surface exhibit morphological characteristics of transitional stage (T-stage) activation, similar to the microglial response observed with laser-induced blood-brain barrier damage. T-stage morphology and microglia directionality indexes were developed to characterize microglial response to implanted probes. Evidence suggesting vascular reorganization after probe insertion and distant vessel damage was also observed hours after probe insertion. SIGNIFICANCE A precise temporal understanding of the cellular response to microelectrode implantation will facilitate the search for molecular cues initiating and attenuating the reactive tissue response.


Journal of Neural Engineering | 2010

Reduction of neurovascular damage resulting from microelectrode insertion into the cerebral cortex using in vivo two-photon mapping

Takashi D.Y. Kozai; Timothy C. Marzullo; F. Hooi; Nicholas B. Langhals; Ania K. Majewska; Edward B. Brown; Daryl R. Kipke

Penetrating neural probe technologies allow investigators to record electrical signals in the brain. The implantation of probes causes acute tissue damage, partially due to vasculature disruption during probe implantation. This trauma can cause abnormal electrophysiological responses and temporary increases in neurotransmitter levels, and perpetuate chronic immune responses. A significant challenge for investigators is to examine neurovascular features below the surface of the brain in vivo. The objective of this study was to investigate localized bleeding resulting from inserting microscale neural probes into the cortex using two-photon microscopy (TPM) and to explore an approach to minimize blood vessel disruption through insertion methods and probe design. 3D TPM images of cortical neurovasculature were obtained from mice and used to select preferred insertion positions for probe insertion to reduce neurovasculature damage. There was an 82.8 +/- 14.3% reduction in neurovascular damage for probes inserted in regions devoid of major (>5 microm) sub-surface vessels. Also, the deviation of surface vessels from the vector normal to the surface as a function of depth and vessel diameter was measured and characterized. 68% of the major vessels were found to deviate less than 49 microm from their surface origin up to a depth of 500 microm. Inserting probes more than 49 microm from major surface vessels can reduce the chances of severing major sub-surface neurovasculature without using TPM.


Biomaterials | 2015

Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording

Takashi D.Y. Kozai; Kasey Catt; Xia Li; Zhannetta V. Gugel; Valur Olafsson; Alberto L. Vazquez; X. Tracy Cui

Penetrating intracortical electrode arrays that record brain activity longitudinally are powerful tools for basic neuroscience research and emerging clinical applications. However, regardless of the technology used, signals recorded by these electrodes degrade over time. The failure mechanisms of these electrodes are understood to be a complex combination of the biological reactive tissue response and material failure of the device over time. While mechanical mismatch between the brain tissue and implanted neural electrodes have been studied as a source of chronic inflammation and performance degradation, the electrode failure caused by mechanical mismatch between different material properties and different structural components within a device have remained poorly characterized. Using Finite Element Model (FEM) we simulate the mechanical strain on a planar silicon electrode. The results presented here demonstrate that mechanical mismatch between iridium and silicon leads to concentrated strain along the border of the two materials. This strain is further focused on small protrusions such as the electrical traces in planar silicon electrodes. These findings are confirmed with chronic in vivo data (133-189 days) in mice by correlating a combination of single-unit electrophysiology, evoked multi-unit recordings, electrochemical impedance spectroscopy, and scanning electron microscopy from traces and electrode sites with our modeling data. Several modes of mechanical failure of chronically implanted planar silicon electrodes are found that result in degradation and/or loss of recording. These findings highlight the importance of strains and material properties of various subcomponents within an electrode array.


Biomaterials | 2014

Chronic tissue response to carboxymethyl cellulose based dissolvable insertion needle for ultra-small neural probes.

Takashi D.Y. Kozai; Zhannetta V. Gugel; Xia Li; Peter J. Gilgunn; Rakesh Khilwani; O. Burak Ozdoganlar; Gary K. Fedder; Douglas J. Weber; X. Tracy Cui

Implantable neural electrodes must drastically improve chronic recording stability before they can be translated into long-term human clinical prosthetics. Previous studies suggest that sub-cellular sized and mechanically compliant probes may result in improved tissue integration and recording longevity. However, currently these design features are restricted by the opposing mechanical requirements needed for minimally damaging insertions. We designed a non-cytotoxic, carboxymethylcellulose (CMC) based dissolvable delivery vehicle (shuttle) to provide the mechanical support for insertion of ultra-small, ultra-compliant microfabricated neural probes. Stiff CMC-based shuttles rapidly soften immediately after being placed ∼1 mm above an open craniotomy as they absorb vapors from the brain. To address this, we developed a sophisticated targeting, high speed insertion (∼80 mm/s), and release system to implant these shuttles. After implantation, the goal is for the shuttle to dissolve away leaving only the electrodes behind. Here we show the histology of chronically implanted shuttles of large (300 μm × 125 μm) and small (100 μm × 125 μm) size at discrete time points over 12 weeks. Early time points show the CMC shuttle expanded after insertion as it absorbed moisture from the brain and slowly dissolved. At later time points neuronal cell bodies populate regions within the original shuttle tract. The large CMC shuttles show that the CMC expansion can cause extended secondary damage. On the other hand, the smaller CMC shuttles show limited secondary damage, wound closure by 4 weeks, absence of activated microglia at 12 weeks, as well as evidence suggesting neural regeneration at the implant site. This shuttle, therefore, shows great promise facilitating the implantation of nontraditional ultra-small, and ultra-compliant probes.


IEEE Transactions on Biomedical Engineering | 2016

Chronic In Vivo Evaluation of PEDOT/CNT for Stable Neural Recordings

Takashi D.Y. Kozai; Kasey Catt; Zhanhong Du; Kyounghwan Na; Onnop Srivannavit; Razi Ul M. Haque; John P. Seymour; Kensall D. Wise; Euisik Yoon; Xinyan Tracy Cui

Objective: Subcellular-sized chronically implanted recording electrodes have demonstrated significant improvement in single unit (SU) yield over larger recording probes. Additional work expands on this initial success by combining the subcellular fiber-like lattice structures with the design space versatility of silicon microfabrication to further improve the signal-to-noise ratio, density of electrodes, and stability of recorded units over months to years. However, ultrasmall microelectrodes present very high impedance, which must be lowered for SU recordings. While poly(3,4-ethylenedioxythiophene) (PEDOT) doped with polystyrene sulfonate (PSS) coating have demonstrated great success in acute to early-chronic studies for lowering the electrode impedance, concern exists over long-term stability. Here, we demonstrate a new blend of PEDOT doped with carboxyl functionalized multiwalled carbon nanotubes (CNTs), which shows dramatic improvement over the traditional PEDOT/PSS formula. Methods: Lattice style subcellular electrode arrays were fabricated using previously established method. PEDOT was polymerized with carboxylic acid functionalized carbon nanotubes onto high-impedance (8.0 ± 0.1 MΩ: M ± S.E.) 250-μm2 gold recording sites. Results: PEDOT/CNT-coated subcellular electrodes demonstrated significant improvement in chronic spike recording stability over four months compared to PEDOT/PSS recording sites. Conclusion: These results demonstrate great promise for subcellular-sized recording and stimulation electrodes and long-term stability. Significance: This project uses leading-edge biomaterials to develop chronic neural probes that are small (subcellular) with excellent electrical properties for stable long-term recordings. High-density ultrasmall electrodes combined with advanced electrode surface modification are likely to make significant contributions to the development of long-term (permanent), high quality, and selective neural interfaces.


Journal of Neuroscience Methods | 2015

Comprehensive chronic laminar single-unit, multi-unit, and local field potential recording performance with planar single shank electrode arrays

Takashi D.Y. Kozai; Zhanhong Du; Zhannetta V. Gugel; Matthew A. Smith; Steven M. Chase; Lance Bodily; Ellen Caparosa; Robert M. Friedlander; X. Tracy Cui

BACKGROUND Intracortical electrode arrays that can record extracellular action potentials from small, targeted groups of neurons are critical for basic neuroscience research and emerging clinical applications. In general, these electrode devices suffer from reliability and variability issues, which have led to comparative studies of existing and emerging electrode designs to optimize performance. Comparisons of different chronic recording devices have been limited to single-unit (SU) activity and employed a bulk averaging approach treating brain architecture as homogeneous with respect to electrode distribution. NEW METHOD In this study, we optimize the methods and parameters to quantify evoked multi-unit (MU) and local field potential (LFP) recordings in eight mice visual cortices. RESULTS These findings quantify the large recording differences stemming from anatomical differences in depth and the layer dependent relative changes to SU and MU recording performance over 6-months. For example, performance metrics in Layer V and stratum pyramidale were initially higher than Layer II/III, but decrease more rapidly. On the other hand, Layer II/III maintained recording metrics longer. In addition, chronic changes at the level of layer IV are evaluated using visually evoked current source density. COMPARISON WITH EXISTING METHOD(S) The use of MU and LFP activity for evaluation and tracking biological depth provides a more comprehensive characterization of the electrophysiological performance landscape of microelectrodes. CONCLUSIONS A more extensive spatial and temporal insight into the chronic electrophysiological performance over time will help uncover the biological and mechanical failure mechanisms of the neural electrodes and direct future research toward the elucidation of design optimization for specific applications.


Journal of Neural Engineering | 2015

Evaluation of poly(3,4- ethylenedioxythiophene)/carbon nanotube neural electrode coatings for stimulation in the dorsal root ganglion

Christi Kolarcik; Kasey Catt; Erika Rost; Ingrid N Albrecht; Dennis Bourbeau; Zhanhong Du; Takashi D.Y. Kozai; Xiliang Luo; Douglas J. Weber; X. Tracy Cui

OBJECTIVE The dorsal root ganglion is an attractive target for implanting neural electrode arrays that restore sensory function or provide therapy via stimulation. However, penetrating microelectrodes designed for these applications are small and deliver low currents. For long-term performance of microstimulation devices, novel coating materials are needed in part to decrease impedance values at the electrode-tissue interface and to increase charge storage capacity. APPROACH Conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and multi-wall carbon nanotubes (CNTs) were coated on the electrode surface and doped with the anti-inflammatory drug, dexamethasone. Electrode characteristics and the tissue reaction around neural electrodes as a result of stimulation, coating and drug release were characterized. Hematoxylin and eosin staining along with antibodies recognizing Iba1 (microglia/macrophages), NF200 (neuronal axons), NeuN (neurons), vimentin (fibroblasts), caspase-3 (cell death) and L1 (neural cell adhesion molecule) were used. Quantitative image analyses were performed using MATLAB. MAIN RESULTS Our results indicate that coated microelectrodes have lower in vitro and in vivo impedance values. Significantly less neuronal death/damage was observed with coated electrodes as compared to non-coated controls. The inflammatory response with the PEDOT/CNT-coated electrodes was also reduced. SIGNIFICANCE This study is the first to report on the utility of these coatings in stimulation applications. Our results indicate PEDOT/CNT coatings may be valuable additions to implantable electrodes used as therapeutic modalities.

Collaboration


Dive into the Takashi D.Y. Kozai's collaboration.

Top Co-Authors

Avatar

X. Tracy Cui

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James R. Eles

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kasey Catt

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge