Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kasey Catt is active.

Publication


Featured researches published by Kasey Catt.


Biomaterials | 2015

Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording

Takashi D.Y. Kozai; Kasey Catt; Xia Li; Zhannetta V. Gugel; Valur Olafsson; Alberto L. Vazquez; X. Tracy Cui

Penetrating intracortical electrode arrays that record brain activity longitudinally are powerful tools for basic neuroscience research and emerging clinical applications. However, regardless of the technology used, signals recorded by these electrodes degrade over time. The failure mechanisms of these electrodes are understood to be a complex combination of the biological reactive tissue response and material failure of the device over time. While mechanical mismatch between the brain tissue and implanted neural electrodes have been studied as a source of chronic inflammation and performance degradation, the electrode failure caused by mechanical mismatch between different material properties and different structural components within a device have remained poorly characterized. Using Finite Element Model (FEM) we simulate the mechanical strain on a planar silicon electrode. The results presented here demonstrate that mechanical mismatch between iridium and silicon leads to concentrated strain along the border of the two materials. This strain is further focused on small protrusions such as the electrical traces in planar silicon electrodes. These findings are confirmed with chronic in vivo data (133-189 days) in mice by correlating a combination of single-unit electrophysiology, evoked multi-unit recordings, electrochemical impedance spectroscopy, and scanning electron microscopy from traces and electrode sites with our modeling data. Several modes of mechanical failure of chronically implanted planar silicon electrodes are found that result in degradation and/or loss of recording. These findings highlight the importance of strains and material properties of various subcomponents within an electrode array.


IEEE Transactions on Biomedical Engineering | 2016

Chronic In Vivo Evaluation of PEDOT/CNT for Stable Neural Recordings

Takashi D.Y. Kozai; Kasey Catt; Zhanhong Du; Kyounghwan Na; Onnop Srivannavit; Razi Ul M. Haque; John P. Seymour; Kensall D. Wise; Euisik Yoon; Xinyan Tracy Cui

Objective: Subcellular-sized chronically implanted recording electrodes have demonstrated significant improvement in single unit (SU) yield over larger recording probes. Additional work expands on this initial success by combining the subcellular fiber-like lattice structures with the design space versatility of silicon microfabrication to further improve the signal-to-noise ratio, density of electrodes, and stability of recorded units over months to years. However, ultrasmall microelectrodes present very high impedance, which must be lowered for SU recordings. While poly(3,4-ethylenedioxythiophene) (PEDOT) doped with polystyrene sulfonate (PSS) coating have demonstrated great success in acute to early-chronic studies for lowering the electrode impedance, concern exists over long-term stability. Here, we demonstrate a new blend of PEDOT doped with carboxyl functionalized multiwalled carbon nanotubes (CNTs), which shows dramatic improvement over the traditional PEDOT/PSS formula. Methods: Lattice style subcellular electrode arrays were fabricated using previously established method. PEDOT was polymerized with carboxylic acid functionalized carbon nanotubes onto high-impedance (8.0 ± 0.1 MΩ: M ± S.E.) 250-μm2 gold recording sites. Results: PEDOT/CNT-coated subcellular electrodes demonstrated significant improvement in chronic spike recording stability over four months compared to PEDOT/PSS recording sites. Conclusion: These results demonstrate great promise for subcellular-sized recording and stimulation electrodes and long-term stability. Significance: This project uses leading-edge biomaterials to develop chronic neural probes that are small (subcellular) with excellent electrical properties for stable long-term recordings. High-density ultrasmall electrodes combined with advanced electrode surface modification are likely to make significant contributions to the development of long-term (permanent), high quality, and selective neural interfaces.


Journal of Neural Engineering | 2015

Evaluation of poly(3,4- ethylenedioxythiophene)/carbon nanotube neural electrode coatings for stimulation in the dorsal root ganglion

Christi Kolarcik; Kasey Catt; Erika Rost; Ingrid N Albrecht; Dennis Bourbeau; Zhanhong Du; Takashi D.Y. Kozai; Xiliang Luo; Douglas J. Weber; X. Tracy Cui

OBJECTIVE The dorsal root ganglion is an attractive target for implanting neural electrode arrays that restore sensory function or provide therapy via stimulation. However, penetrating microelectrodes designed for these applications are small and deliver low currents. For long-term performance of microstimulation devices, novel coating materials are needed in part to decrease impedance values at the electrode-tissue interface and to increase charge storage capacity. APPROACH Conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and multi-wall carbon nanotubes (CNTs) were coated on the electrode surface and doped with the anti-inflammatory drug, dexamethasone. Electrode characteristics and the tissue reaction around neural electrodes as a result of stimulation, coating and drug release were characterized. Hematoxylin and eosin staining along with antibodies recognizing Iba1 (microglia/macrophages), NF200 (neuronal axons), NeuN (neurons), vimentin (fibroblasts), caspase-3 (cell death) and L1 (neural cell adhesion molecule) were used. Quantitative image analyses were performed using MATLAB. MAIN RESULTS Our results indicate that coated microelectrodes have lower in vitro and in vivo impedance values. Significantly less neuronal death/damage was observed with coated electrodes as compared to non-coated controls. The inflammatory response with the PEDOT/CNT-coated electrodes was also reduced. SIGNIFICANCE This study is the first to report on the utility of these coatings in stimulation applications. Our results indicate PEDOT/CNT coatings may be valuable additions to implantable electrodes used as therapeutic modalities.


Biosensors and Bioelectronics | 2017

Enhanced dopamine detection sensitivity by PEDOT/graphene oxide coating on in vivo carbon fiber electrodes

I. Mitch Taylor; Elaine M. Robbins; Kasey Catt; Patrick A. Cody; Cassandra L. Happe; Xinyan Tracy Cui

Dopamine (DA) is a monoamine neurotransmitter responsible for regulating a variety of vital life functions. In vivo detection of DA poses a challenge due to the low concentration and high speed of physiological signaling. Fast scan cyclic voltammetry at carbon fiber microelectrodes (CFEs) is an effective method to monitor real-time in vivo DA signaling, however the sensitivity is somewhat limited. Electrodeposition of poly(3,4-ethylene dioxythiophene) (PEDOT)/graphene oxide (GO) onto the CFE surface is shown to increase the sensitivity and lower the limit of detection for DA compared to bare CFEs. Thicker PEDOT/GO coatings demonstrate higher sensitivities for DA, but display the negative drawback of slow adsorption and electron transfer kinetics. The moderate thickness resulting from 25 s electrodeposition of PEDOT/GO produces the optimal electrode, exhibiting an 880% increase in sensitivity, a 50% decrease in limit of detection and minimally altered electrode kinetics. PEDOT/GO coated electrodes rapidly and robustly detect DA, both in solution and in the rat dorsal striatum. This increase in DA sensitivity is likely due to increasing the electrode surface area with a PEDOT/GO coating and improved adsorption of DAs oxidation product (DA-o-quinone). Increasing DA sensitivity without compromising electrode kinetics is expected to significantly improve our understanding of the DA function in vivo.


Biosensors | 2015

In Vivo Electrochemical Analysis of a PEDOT/MWCNT Neural Electrode Coating

Nicolas A. Alba; Zhanhong J. Du; Kasey Catt; Takashi D.Y. Kozai; X. Tracy Cui

Neural electrodes hold tremendous potential for improving understanding of brain function and restoring lost neurological functions. Multi-walled carbon nanotube (MWCNT) and dexamethasone (Dex)-doped poly(3,4-ethylenedioxythiophene) (PEDOT) coatings have shown promise to improve chronic neural electrode performance. Here, we employ electrochemical techniques to characterize the coating in vivo. Coated and uncoated electrode arrays were implanted into rat visual cortex and subjected to daily cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) for 11 days. Coated electrodes experienced a significant decrease in 1 kHz impedance within the first two days of implantation followed by an increase between days 4 and 7. Equivalent circuit analysis showed that the impedance increase is the result of surface capacitance reduction, likely due to protein and cellular processes encapsulating the porous coating. Coating’s charge storage capacity remained consistently higher than uncoated electrodes, demonstrating its in vivo electrochemical stability. To decouple the PEDOT/MWCNT material property changes from the tissue response, in vitro characterization was conducted by soaking the coated electrodes in PBS for 11 days. Some coated electrodes exhibited steady impedance while others exhibiting large increases associated with large decreases in charge storage capacity suggesting delamination in PBS. This was not observed in vivo, as scanning electron microscopy of explants verified the integrity of the coating with no sign of delamination or cracking. Despite the impedance increase, coated electrodes successfully recorded neural activity throughout the implantation period.


Acta Biomaterialia | 2017

Poly (3,4-ethylenedioxythiophene) graphene oxide composite coatings for controlling magnesium implant corrosion.

Kasey Catt; Huaxiu Li; X. Tracy Cui

Magnesium (Mg) is a promising biodegradable implant material because of its appropriate mechanical properties and safe degradation products. However, in vivo corrosion speed and hydrogen gas production need to be controlled for uses in biomedical applications. Here we report the development of a conducting polymer 3,4-ethylenedioxythiphene (PEDOT) and graphene oxide (GO) composite coating as a corrosion control layer. PEDOT/GO was electropolymerized on Mg samples in ethanol media. The coated Mg samples were subjected to various corrosion tests. The PEDOT/GO coating significantly reduced the rate of corrosion as evidenced by lower Mg ion concentration and pH of the corrosion media. In addition, the coating decreased the evolved hydrogen. Electrochemical analysis of the corroding samples showed more positive corrosion potential, a decreased corrosion current, and an increase in the polarization resistance. PEDOT/GO corrosion protection is attributed to three factors; an initial passive layer preventing solution ingress, buildup of negative charges in the film, and formation of corrosion protective Mg phosphate layer through redox coupling with Mg corrosion. To explore the biocompatibility of the coated implants in vitro, corrosion media from PEDOT/GO coated or uncoated Mg samples were exposed to cultured neurons where PEDOT/GO coated samples showed decreased toxicity. These results suggest that PEDOT/GO coating will be an effective treatment for controlling corrosion of Mg based medical implants. STATEMENT OF SIGNIFICANCE Coating Mg substrates with a PEDOT/GO composite coating showed a significant decrease in corrosion rate. While conducting polymer coatings have been used to prevent corrosion on various metals, there has been little work on the use of these coatings for Mg. Additionally, to our knowledge, there has not been a report of the combined used of conducting polymer and GO as a corrosion control layer. Corrosion control is attributed to an initial barrier layer followed by electrochemical coupling of the PEDOT/GO coating with the substrate to facilitate the formation of a protective phosphate layer. This coupling also resulted in a decrease in hydrogen produced during corrosion, which could further improve the host tissue integration of Mg implants. This work elaborates on the potential for electroactive polymers to serve as corrosion control methods.


Journal of Materials Chemistry B | 2017

Aptamer-functionalized neural recording electrodes for the direct measurement of cocaine in vivo

I. Mitch Taylor; Zhanhong Du; Emma T. Bigelow; James R. Eles; Anthony R. Horner; Kasey Catt; Stephen G. Weber; Brian G. Jamieson; X. Tracy Cui

Cocaine is a highly addictive psychostimulant that acts through competitive inhibition of the dopamine transporter. In order to fully understand the region specific neuropathology of cocaine abuse and addiction, it is unequivocally necessary to develop cocaine sensing technology capable of directly measuring real-time cocaine transient events local to different brain regions throughout the pharmacokinetic time course of exposure. We have developed an electrochemical aptamer-based in vivo cocaine sensor on a silicon based neural recording probe platform capable of directly measuring cocaine from discrete brain locations using square wave voltammetry (SWV). The sensitivity of the sensor for cocaine follows a modified exponential Langmuir model relationship and complete aptamer-target binding occurs in < 2 sec and unbinding in < 4 sec. The resulting temporal resolution is a 75X increase from traditional microdialysis sampling methods. When implanted in the rat dorsal striatum, the cocaine sensor exhibits stable SWV signal drift (modeled using a logarithmic exponential equation) and is capable of measuring real-time in vivo response to repeated local cocaine infusion as well as systemic IV cocaine injection. The in vivo sensor is capable of obtaining reproducible measurements over a period approaching 3 hours, after which signal amplitude significantly decreases likely due to tissue encapsulation. Finally, aptamer functionalized neural recording probes successfully detect spontaneous and evoked neural activity in the brain. This dual functionality makes the cocaine sensor a powerful tool capable of monitoring both biochemical and electrophysiological signals with high spatial and temporal resolution.


Nanomedicine: Nanotechnology, Biology and Medicine | 2017

Self-powered therapeutic release from conducting polymer/graphene oxide films on magnesium

Kasey Catt; Huaxiu Li; Victor Hoang; Roland Beard; X. Tracy Cui

Magnesiums complete in vivo degradation is appealing for medical implant applications. Rapid corrosion and hydrogen bubble generation along with inflammatory host tissue response have limited its clinical use. Here we electropolymerized a poly (3,4-ethylenedioxythiophene) (PEDOT) and graphene oxide (GO) film directly on Mg surface. GO acted as nano-drug carrier to carry anti-inflammatory drug dexamethasone (Dex). PEDOT/GO/Dex coatings improved Mg corrosion resistance and decreased the rate of hydrogen production. Dex could be released driven by the electrical current generated from Mg corrosion. The anti-inflammatory activity of the released Dex was confirmed in microglia cultures. This PEDOT/GO/Dex film displayed the ability to both control Mg corrosion and act as an on demand release coating that delivers Dex at the corrosion site to minimize detrimental effects of corrosion byproducts. Such multi-functional smart coating will improve the clinical use of Mg implants. Furthermore, the PEDOT/GO/Drug/Mg system may be developed into self-powered implantable drug delivery devices.


Archive | 2017

ANTIOXIDANT COMPOUNDS AND THEIR USE

Xinyan Tracy Cui; Kasey Catt; James R. Eles


Journal of Materials Chemistry B | 2017

Correction: Aptamer-functionalized neural recording electrodes for the direct measurement of cocaine in vivo

I. Mitch Taylor; Zhanhong Du; Emma T. Bigelow; James R. Eles; Anthony R. Horner; Kasey Catt; Stephen G. Weber; Brian G. Jamieson; X. Tracy Cui

Collaboration


Dive into the Kasey Catt's collaboration.

Top Co-Authors

Avatar

X. Tracy Cui

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

James R. Eles

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhanhong Du

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huaxiu Li

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge