Jason B. Roberts
Marshall Space Flight Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jason B. Roberts.
Hydrology and Earth System Sciences | 2014
Chris Funk; Andrew Hoell; Shraddhanand Shukla; Ileana Bladé; Brant Liebmann; Jason B. Roberts; Franklin R. Robertson; Gregory J. Husak
Introduction Conclusions References
Climate Dynamics | 2016
Shraddhanand Shukla; Jason B. Roberts; Andrew Hoell; Chris Funk; Franklin R. Robertson; Ben P. Kirtman
The skill of North American multimodel ensemble (NMME) seasonal forecasts in East Africa (EA), which encompasses one of the most food and water insecure areas of the world, is evaluated using deterministic, categorical, and probabilistic evaluation methods. The skill is estimated for all three primary growing seasons: March–May (MAM), July–September (JAS), and October–December (OND). It is found that the precipitation forecast skill in this region is generally limited and statistically significant over only a small part of the domain. In the case of MAM (JAS) [OND] season it exceeds the skill of climatological forecasts in parts of equatorial EA (Northern Ethiopia) [equatorial EA] for up to 2 (5) [5] months lead. Temperature forecast skill is generally much higher than precipitation forecast skill (in terms of deterministic and probabilistic skill scores) and statistically significant over a majority of the region. Over the region as a whole, temperature forecasts also exhibit greater reliability than the precipitation forecasts. The NMME ensemble forecasts are found to be more skillful and reliable than the forecast from any individual model. The results also demonstrate that for some seasons (e.g. JAS), the predictability of precipitation signals varies and is higher during certain climate events (e.g. ENSO). Finally, potential room for improvement in forecast skill is identified in some models by comparing homogeneous predictability in individual NMME models with their respective forecast skill.
Journal of Climate | 2012
Franklin R. Robertson; Jason B. Roberts
AbstractThis paper investigates intraseasonal variability as represented by the recent NASA Global Modeling and Assimilation Office (GMAO) reanalysis, the Modern-Era Retrospective analysis for Research and Applications (MERRA). The authors examine the behavior of heat, moisture, and radiative fluxes emphasizing their contribution to intraseasonal variations in heat and moisture balance integrated over the tropical oceans. MERRA successfully captures intraseasonal signals in both state variables and fluxes, though it depends heavily on the analysis increment update terms that constrain the reanalysis to be near the observations. Precipitation anomaly patterns evolve in close agreement with those from the Tropical Rainfall Measuring Mission (TRMM) though locally MERRA may occasionally be smaller by up to 20%. As in the TRMM observations, tropical convection increases lead tropospheric warming by approximately 7 days. Radiative flux anomalies are dominated by cloud forcing and are found to replicate the top-...
Journal of Hydrometeorology | 2016
Safat Sikder; Xiaodong Chen; Faisal Hossain; Jason B. Roberts; Franklin R. Robertson; C. K. Shum; Francis J. Turk
AbstractThis study asks the question of whether GCMs are ready to be operationalized for streamflow forecasting in South Asian river basins, and if so, at what temporal scales and for which water management decisions are they likely to be relevant? The authors focused on the Ganges, Brahmaputra, and Meghna basins for which there is a gridded hydrologic model calibrated for the 2002–10 period. The North American Multimodel Ensemble (NMME) suite of eight GCM hindcasts was applied to generate precipitation forecasts for each month of the 1982–2012 (30 year) period at up to 6 months of lead time, which were then downscaled according to the bias-corrected statistical downscaling (BCSD) procedure to daily time steps. A global retrospective forcing dataset was used for this downscaling procedure. The study clearly revealed that a regionally consistent forcing for BCSD, which is currently unavailable for the region, is one of the primary conditions to realize reasonable skill in streamflow forecasting. In terms o...
international geoscience and remote sensing symposium | 2013
Timothy L. Miller; Mark W. James; Jason B. Roberts; Sayak K. Biswas; Daniel J. Cecil; W.L. Jones; James Johnson; Spencer Farrar; Saleem Sahawneh; Christopher S. Ruf; Mary Morris; Eric W. Uhlhorn; Peter G. Black
The Hurricane Imaging Radiometer (HIRAD) is an airborne passive microwave radiometer designed to provide high resolution, wide swath imagery of surface wind speed in tropical cyclones from a low profile planar antenna with no mechanical scanning. Wind speed and rain rate images from HIRADs first field campaign (GRIP, 2010) are presented here followed, by a discussion on the performance of the newly installed thermal control system during the 2012 HS3 campaign. The paper ends with a discussion on the next generation dual polarization HIRAD antenna (already designed) for a future system capable of measuring wind direction as well as wind speed.
Journal of Climate | 2016
Franklin R. Robertson; Michael G. Bosilovich; Jason B. Roberts
Vertically-integrated atmospheric moisture transport from ocean to land, VMFC, is a dynamic component of the global climate system but remains problematic in atmospheric reanalyses with current estimates having significant multi-decadal global trends differing even in sign. Regional VMFC trends over continents are especially uncertain. Continual evolution of the global observing system, particularly step-wise improvements in satellite observations, has introduced discrete changes in the ability of data assimilation to correct systematic model biases, manifesting as non-physical variability. Land Surface Models (LSMs) forced with observed precipitation, P, and near-surface meteorology and radiation provide estimates of evapotranspiration, ET. Since variability of atmospheric moisture storage is small on interannual and longer time scales, VMFC = P-ET is a good approximation and LSMs can provide an alternative estimate. However, heterogeneous density of rain gauge coverage, especially the sparse coverage over tropical continents, remains a serious concern. Rotated Principal Component Analysis (RPCA) with pre-filtering of VMFC to isolate the artificial variability is used to investigate artifacts in five reanalysis systems. This procedure, though ad hoc, enables useful VMFC corrections over global land. P-ET estimates from seven different LSMs are evaluated and subsequently used to confirm the efficacy of the RPCA-based adjustments. Global VMFC trends over the period 1979-2012 ranging from 0.07 to -0.03 mmd-1 decade-1 are reduced by the adjustments to 0.016 mmd-1 decade-1, much closer to the LSM P-ET estimate (0.007 mmd-1 decade-1). Neither is significant at the 90 percent level. ENSO-related modulation of VMFC and P-ET remains the largest global interannual signal with mean LSM and adjusted reanalysis time series correlating at 0.86.
Archive | 2014
Shraddhanand Shukla; Jason B. Roberts; Chris Funk; Franklin R. Robertson; Andrew Hoell
Archive | 2017
Franklin R. Robertson; Michael G. Bosilovich; Jason B. Roberts
Archive | 2016
Franklin R. Robertson; Jason B. Roberts; Michael G. Bosilovich
Archive | 2015
Franklin R. Robertson; Michael G. Bosilovich; Jason B. Roberts; Hailan Wang