Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason Paragas is active.

Publication


Featured researches published by Jason Paragas.


Journal of Virology | 2003

The Ebola Virus VP35 Protein Inhibits Activation of Interferon Regulatory Factor 3

Christopher F. Basler; Andrea Mikulasova; Luis Martínez-Sobrido; Jason Paragas; Elke Mühlberger; Mike Bray; Hans-Dieter Klenk; Peter Palese; Adolfo García-Sastre

ABSTRACT The Ebola virus VP35 protein was previously found to act as an interferon (IFN) antagonist which could complement growth of influenza delNS1 virus, a mutant influenza virus lacking the influenza virus IFN antagonist protein, NS1. The Ebola virus VP35 could also prevent the virus- or double-stranded RNA-mediated transcriptional activation of both the beta IFN (IFN-β) promoter and the IFN-stimulated ISG54 promoter (C. Basler et al., Proc. Natl. Acad. Sci. USA 97:12289-12294, 2000). We now show that VP35 inhibits virus infection-induced transcriptional activation of IFN regulatory factor 3 (IRF-3)-responsive mammalian promoters and that VP35 does not block signaling from the IFN-α/β receptor. The ability of VP35 to inhibit this virus-induced transcription correlates with its ability to block activation of IRF-3, a cellular transcription factor of central importance in initiating the host cell IFN response. We demonstrate that VP35 blocks the Sendai virus-induced activation of two promoters which can be directly activated by IRF-3, namely, the ISG54 promoter and the ISG56 promoter. Further, expression of VP35 prevents the IRF-3-dependent activation of the IFN-α4 promoter in response to viral infection. The inhibition of IRF-3 appears to occur through an inhibition of IRF-3 phosphorylation. VP35 blocks virus-induced IRF-3 phosphorylation and subsequent IRF-3 dimerization and nuclear translocation. Consistent with these observations, Ebola virus infection of Vero cells activated neither transcription from the ISG54 promoter nor nuclear accumulation of IRF-3. These data suggest that in Ebola virus-infected cells, VP35 inhibits the induction of antiviral genes, including the IFN-β gene, by blocking IRF-3 activation.


The Lancet | 2003

Treatment of Ebola virus infection with a recombinant inhibitor of factor VIIa/tissue factor: a study in rhesus monkeys

Thomas W. Geisbert; Lisa E. Hensley; Peter B. Jahrling; Tom Larsen; Joan B. Geisbert; Jason Paragas; Howard A. Young; Terry M Fredeking; William E. Rote; George P. Vlasuk

BACKGROUND Infection with the Ebola virus induces overexpression of the procoagulant tissue factor in primate monocytes and macrophages, suggesting that inhibition of the tissue-factor pathway could ameliorate the effects of Ebola haemorrhagic fever. Here, we tested the notion that blockade of fVIIa/tissue factor is beneficial after infection with Ebola virus. METHODS We used a rhesus macaque model of Ebola haemorrhagic fever, which produces near 100% mortality. We administered recombinant nematode anticoagulant protein c2 (rNAPc2), a potent inhibitor of tissue factor-initiated blood coagulation, to the macaques either 10 min (n=6) or 24 h (n=3) after a high-dose lethal injection of Ebola virus. Three animals served as untreated Ebola virus-positive controls. Historical controls were also used in some analyses. FINDINGS Both treatment regimens prolonged survival time, with a 33% survival rate in each treatment group. Survivors are still alive and healthy after 9 months. All but one of the 17 controls died. The mean survival for the six rNAPc2-treated macaques that died was 11.7 days compared with 8.3 days for untreated controls (p=0.0184). rNAPc2 attenuated the coagulation response as evidenced by modulation of various important coagulation factors, including plasma D dimers, which were reduced in nearly all treated animals; less prominent fibrin deposits and intravascular thromboemboli were observed in tissues of some animals that succumbed to Ebola virus. Furthermore, rNAPc2 attenuated the proinflammatory response with lower plasma concentrations of interleukin 6 and monocyte chemoattractant protein-1 (MCP-1) noted in the treated than in the untreated macaques. INTERPRETATION Post-exposure protection with rNAPc2 against Ebola virus in primates provides a new foundation for therapeutic regimens that target the disease process rather than viral replication.


Cell Host & Microbe | 2007

Ovarian Tumor Domain-Containing Viral Proteases Evade Ubiquitin- and ISG15-Dependent Innate Immune Responses

Natalia Frias-Staheli; Nadia V. Giannakopoulos; Marjolein Kikkert; Shannon L. Taylor; Anne Bridgen; Jason Paragas; Juergen A. Richt; Raymond R. R. Rowland; Connie S. Schmaljohn; Deborah J. Lenschow; Eric J. Snijder; Adolfo García-Sastre; Herbert W. Virgin

Summary Ubiquitin (Ub) and interferon-stimulated gene product 15 (ISG15) reversibly conjugate to proteins and mediate important innate antiviral responses. The ovarian tumor (OTU) domain represents a superfamily of predicted proteases found in eukaryotic, bacterial, and viral proteins, some of which have Ub-deconjugating activity. We show that the OTU domain-containing proteases from nairoviruses and arteriviruses, two unrelated groups of RNA viruses, hydrolyze Ub and ISG15 from cellular target proteins. This broad activity contrasts with the target specificity of known mammalian OTU domain-containing proteins. Expression of a viral OTU domain-containing protein antagonizes the antiviral effects of ISG15 and enhances susceptibility to Sindbis virus infection in vivo. We also show that viral OTU domain-containing proteases inhibit NF-κB-dependent signaling. Thus, the deconjugating activity of viral OTU proteases represents a unique viral strategy to inhibit Ub- and ISG15-dependent antiviral pathways.


Journal of Virology | 2003

Overlapping Motifs (PTAP and PPEY) within the Ebola Virus VP40 Protein Function Independently as Late Budding Domains: Involvement of Host Proteins TSG101 and VPS-4

Jillian M. Licata; Martha Simpson-Holley; Nathan T. Wright; Ziying Han; Jason Paragas; Ronald N. Harty

ABSTRACT The VP40 protein of Ebola virus can bud from mammalian cells in the form of lipid-bound, virus-like particles (VLPs), and late budding domains (L-domains) are conserved motifs (PTAP, PPxY, or YxxL; where “x” is any amino acid) that facilitate the budding of VP40-containing VLPs. VP40 is unique in that potential overlapping L-domains with the sequences PTAP and PPEY are present at amino acids 7 to 13 of VP40 (PTAPPEY). L-domains are thought to function by interacting with specific cellular proteins, such as the ubiquitin ligase Nedd4, and a component of the vacuolar protein sorting (vps) pathway, tsg101. Mutational analysis of the PTAPPEY sequence of VP40 was performed to understand further the contribution of each individual motif in promoting VP40 budding. In addition, the contribution of tsg101 and a second member of the vps pathway, vps4, in facilitating budding was addressed. Our results indicate that (i) both the PTAP and PPEY motifs contribute to efficient budding of VP40-containing VLPs; (ii) PTAP and PPEY can function as L-domains when separated and moved from the N terminus (amino acid position 7) to the C terminus (amino acid position 316) of full-length VP40; (iii) A VP40-PTAP/tsg101 interaction recruits tsg101 into budding VLPs; (iv) a VP40-PTAP/tsg101 interaction recruits VP40 into lipid raft microdomains; and (v) a dominant-negative mutant of vps4 (E228Q), but not wild-type vps4, significantly inhibited the budding of Ebola virus (Zaire). These results provide important insights into the complex interplay between viral and host proteins during the late stages of Ebola virus budding.


PLOS Pathogens | 2008

Vesicular Stomatitis Virus-Based Ebola Vaccine Is Well-Tolerated and Protects Immunocompromised Nonhuman Primates

Thomas W. Geisbert; Kathleen M. Daddario-DiCaprio; Mark G. Lewis; Joan B. Geisbert; Allen Grolla; Anders Leung; Jason Paragas; Lennox Matthias; Mark A. Smith; Steven M. Jones; Lisa E. Hensley; Heinz Feldmann; Peter B. Jahrling

Ebola virus (EBOV) is a significant human pathogen that presents a public health concern as an emerging/re-emerging virus and as a potential biological weapon. Substantial progress has been made over the last decade in developing candidate preventive vaccines that can protect nonhuman primates against EBOV. Among these prospects, a vaccine based on recombinant vesicular stomatitis virus (VSV) is particularly robust, as it can also confer protection when administered as a postexposure treatment. A concern that has been raised regarding the replication-competent VSV vectors that express EBOV glycoproteins is how these vectors would be tolerated by individuals with altered or compromised immune systems such as patients infected with HIV. This is especially important as all EBOV outbreaks to date have occurred in areas of Central and Western Africa with high HIV incidence rates in the population. In order to address this concern, we evaluated the safety of the recombinant VSV vector expressing the Zaire ebolavirus glycoprotein (VSVΔG/ZEBOVGP) in six rhesus macaques infected with simian-human immunodeficiency virus (SHIV). All six animals showed no evidence of illness associated with the VSVΔG/ZEBOVGP vaccine, suggesting that this vaccine may be safe in immunocompromised populations. While one goal of the study was to evaluate the safety of the candidate vaccine platform, it was also of interest to determine if altered immune status would affect vaccine efficacy. The vaccine protected 4 of 6 SHIV-infected macaques from death following ZEBOV challenge. Evaluation of CD4+ T cells in all animals showed that the animals that succumbed to lethal ZEBOV challenge had the lowest CD4+ counts, suggesting that CD4+ T cells may play a role in mediating protection against ZEBOV.


Journal of Virology | 2003

Biochemical and functional characterization of the Ebola virus VP24 protein: implications for a role in virus assembly and budding.

Ziying Han; Hani Boshra; J. Oriol Sunyer; Susan H. Zwiers; Jason Paragas; Ronald N. Harty

ABSTRACT The VP24 protein of Ebola virus is believed to be a secondary matrix protein and minor component of virions. In contrast, the VP40 protein of Ebola virus is the primary matrix protein and the most abundant virion component. The structure and function of VP40 have been well characterized; however, virtually nothing is known regarding the structure and function of VP24. Wild-type and mutant forms of VP24 were expressed in mammalian cells to gain a better understanding of the biochemical and functional nature of this viral protein. Results from these experiments demonstrated that (i) VP24 localizes to the plasma membrane and perinuclear region in both transfected and Ebola virus-infected cells, (ii) VP24 associates strongly with lipid membranes, (iii) VP24 does not contain N-linked sugars when expressed alone in mammalian cells, (iv) VP24 can oligomerize when expressed alone in mammalian cells, (v) progressive deletions at the N terminus of VP24 resulted in a decrease in oligomer formation and a concomitant increase in the formation of high-molecular-weight aggregates, and (vi) VP24 was present in trypsin-resistant virus like particles released into the media covering VP24-transfected cells. These data indicate that VP24 possesses structural features commonly associated with viral matrix proteins and that VP24 may have a role in virus assembly and budding.


Journal of Virology | 2007

Influences of Glycosylation on Antigenicity, Immunogenicity, and Protective Efficacy of Ebola Virus GP DNA Vaccines

William Dowling; Elizabeth Thompson; Catherine V. Badger; Jenny L. Mellquist; Aura R. Garrison; Jeffery M. Smith; Jason Paragas; Robert J. Hogan; Connie S. Schmaljohn

ABSTRACT The Ebola virus (EBOV) envelope glycoprotein (GP) is the primary target of protective immunity. Mature GP consists of two disulfide-linked subunits, GP1 and membrane-bound GP2. GP is highly glycosylated with both N- and O-linked carbohydrates. We measured the influences of GP glycosylation on antigenicity, immunogenicity, and protection by testing DNA vaccines comprised of GP genes with deleted N-linked glycosylation sites or with deletions in the central hypervariable mucin region. We showed that mutation of one of the two N-linked GP2 glycosylation sites was highly detrimental to the antigenicity and immunogenicity of GP. Our data indicate that this is likely due to the inability of GP2 and GP1 to dimerize at the cell surface and suggest that glycosylation at this site is required for achieving the conformational integrity of GP2 and GP1. In contrast, mutation of two N-linked sites on GP1, which flank previously defined protective antibody epitopes on GP, may enhance immunogenicity, possibly by unmasking epitopes. We further showed that although deleting the mucin region apparently had no effect on antigenicity in vitro, it negatively impacted the elicitation of protective immunity in mice. In addition, we confirmed the presence of previously identified B-cell and T-cell epitopes in GP but show that when analyzed individually none of them were neither absolutely required nor sufficient for protective immunity to EBOV. Finally, we identified other potential regions of GP that may contain relevant antibody or T-cell epitopes.


Journal of Virology | 2004

Resolution of Primary Severe Acute Respiratory Syndrome-Associated Coronavirus Infection Requires Stat1

Robert J. Hogan; Guangping Gao; Thomas Rowe; Peter Bell; Douglas B. Flieder; Jason Paragas; Gary P. Kobinger; Nelson A. Wivel; Ronald G. Crystal; Julie L. Boyer; Heinz Feldmann; Thomas G. Voss; James M. Wilson

ABSTRACT Intranasal inhalation of the severe acute respiratory syndrome coronavirus (SARS CoV) in the immunocompetent mouse strain 129SvEv resulted in infection of conducting airway epithelial cells followed by rapid clearance of virus from the lungs and the development of self-limited bronchiolitis. Animals resistant to the effects of interferons by virtue of a deficiency in Stat1 demonstrated a markedly different course following intranasal inhalation of SARS CoV, one characterized by replication of virus in lungs and progressively worsening pulmonary disease with inflammation of small airways and alveoli and systemic spread of the virus to livers and spleens.


Journal of Virology | 2005

Cellular Localization and Antigenic Characterization of Crimean-Congo Hemorrhagic Fever Virus Glycoproteins

Andrea Bertolotti-Ciarlet; Jonathan Smith; Karin Strecker; Jason Paragas; Louis A. Altamura; Jeanne M. McFalls; Natalia Frias-Staheli; Adolfo García-Sastre; Connie S. Schmaljohn; Robert W. Doms

ABSTRACT Crimean-Congo hemorrhagic fever virus (CCHFV), a member of the genus Nairovirus of the family Bunyaviridae, causes severe disease with high rates of mortality in humans. The CCHFV M RNA segment encodes the virus glycoproteins GN and GC. To understand the processing and intracellular localization of the CCHFV glycoproteins as well as their neutralization and protection determinants, we produced and characterized monoclonal antibodies (MAbs) specific for both GN and GC. Using these MAbs, we found that GN predominantly colocalized with a Golgi marker when expressed alone or with GC, while GC was transported to the Golgi apparatus only in the presence of GN. Both proteins remained endo-β-N-acetylglucosaminidase H sensitive, indicating that the CCHFV glycoproteins are most likely targeted to the cis Golgi apparatus. Golgi targeting information partly resides within the GN ectodomain, because a soluble version of GN lacking its transmembrane and cytoplasmic domains also localized to the Golgi apparatus. Coexpression of soluble versions of GN and GC also resulted in localization of soluble GC to the Golgi apparatus, indicating that the ectodomains of these proteins are sufficient for the interactions needed for Golgi targeting. Finally, the mucin-like and P35 domains, located at the N terminus of the GN precursor protein and removed posttranslationally by endoproteolysis, were required for Golgi targeting of GN when it was expressed alone but were dispensable when GC was coexpressed. In neutralization assays on SW-13 cells, MAbs to GC, but not to GN, prevented CCHFV infection. However, only a subset of GC MAbs protected mice in passive-immunization experiments, while some nonneutralizing GN MAbs efficiently protected animals from a lethal CCHFV challenge. Thus, neutralization of CCHFV likely depends not only on the properties of the antibody, but on host cell factors as well. In addition, nonneutralizing antibody-dependent mechanisms, such as antibody-dependent cell-mediated cytotoxicity, may be involved in the in vivo protection seen with the MAbs to GC.


The Journal of Infectious Diseases | 2013

Interferon-β Therapy Prolongs Survival in Rhesus Macaque Models of Ebola and Marburg Hemorrhagic Fever

Lauren M. Smith; Lisa E. Hensley; Thomas W. Geisbert; Joshua C. Johnson; Andrea Stossel; Anna N. Honko; Judy Y. Yen; Joan B. Geisbert; Jason Paragas; Elizabeth A. Fritz; Gene G. Olinger; Howard A. Young; Kathleen H. Rubins; Christopher L. Karp

There is a clear need for novel, effective therapeutic approaches to hemorrhagic fever due to filoviruses. Ebola virus hemorrhagic fever is associated with robust interferon (IFN)-α production, with plasma concentrations of IFN-α that greatly (60- to 100-fold) exceed those seen in other viral infections, but little IFN-β production. While all of the type I IFNs signal through the same receptor complex, both quantitative and qualitative differences in biological activity are observed after stimulation of the receptor complex with different type I IFNs. Taken together, this suggested potential for IFN-β therapy in filovirus infection. Here we show that early postexposure treatment with IFN-β significantly increased survival time of rhesus macaques infected with a lethal dose of Ebola virus, although it failed to alter mortality. Early treatment with IFN-β also significantly increased survival time after Marburg virus infection. IFN-β may have promise as an adjunctive postexposure therapy in filovirus infection.

Collaboration


Dive into the Jason Paragas's collaboration.

Top Co-Authors

Avatar

Peter B. Jahrling

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Joseph E. Blaney

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Reed F. Johnson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Lisa E. Hensley

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Adolfo García-Sastre

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Alvin L. Smith

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Arthur J. Goff

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Connie S. Schmaljohn

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Mike Bray

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Peter Palese

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge