Jayati Bera
J. Craig Venter Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jayati Bera.
BMC Biology | 2005
Nathalie Choisne; Nadia Demange; Gisela Orjeda; Sylvie Samain; Angélique D'Hont; Laurence Cattolico; Eric Pelletier; Arnaud Couloux; Béatrice Segurens; Patrick Wincker; Claude Scarpelli; Jean Weissenbach; Marcel Salanoubat; Nagendra K. Singh; T. Mohapatra; T. R. Sharma; Kishor Gaikwad; Archana Singh; Vivek Dalal; Subodh K. Srivastava; Anupam Dixit; Ajit K. Pal; Irfan Ahmad Ghazi; Mahavir Yadav; Awadhesh Pandit; Ashutosh Bhargava; K. Sureshbabu; Rekha Dixit; Harvinder Singh; Suresh C. Swain
Rice is an important staple food and, with the smallest cereal genome, serves as a reference species for studies on the evolution of cereals and other grasses. Therefore, decoding its entire genome will be a prerequisite for applied and basic research on this species and all other cereals. We have determined and analyzed the complete sequences of two of its chromosomes, 11 and 12, which total 55.9 Mb (14.3% of the entire genome length), based on a set of overlapping clones. A total of 5,993 non-transposable element related genes are present on these chromosomes. Among them are 289 disease resistance-like and 28 defense-response genes, a higher proportion of these categories than on any other rice chromosome. A three-Mb segment on both chromosomes resulted from a duplication 7.7 million years ago (mya), the most recent large-scale duplication in the rice genome. Paralogous gene copies within this segmental duplication can be aligned with genomic assemblies from sorghum and maize. Although these gene copies are preserved on both chromosomes, their expression patterns have diverged. When the gene order of rice chromosomes 11 and 12 was compared to wheat gene loci, significant synteny between these orthologous regions was detected, illustrating the presence of conserved genes alternating with recently evolved genes. Because the resistance and defense response genes, enriched on these chromosomes relative to the whole genome, also occur in clusters, they provide a preferred target for breeding durable disease resistance in rice and the isolation of their allelic variants. The recent duplication of a large chromosomal segment coupled with the high density of disease resistance gene clusters makes this the most recently evolved part of the rice genome. Based on syntenic alignments of these chromosomes, rice chromosome 11 and 12 do not appear to have resulted from a single whole-genome duplication event as previously suggested.BackgroundRice is an important staple food and, with the smallest cereal genome, serves as a reference species for studies on the evolution of cereals and other grasses. Therefore, decoding its entire genome will be a prerequisite for applied and basic research on this species and all other cereals.ResultsWe have determined and analyzed the complete sequences of two of its chromosomes, 11 and 12, which total 55.9 Mb (14.3% of the entire genome length), based on a set of overlapping clones. A total of 5,993 non-transposable element related genes are present on these chromosomes. Among them are 289 disease resistance-like and 28 defense-response genes, a higher proportion of these categories than on any other rice chromosome. A three-Mb segment on both chromosomes resulted from a duplication 7.7 million years ago (mya), the most recent large-scale duplication in the rice genome. Paralogous gene copies within this segmental duplication can be aligned with genomic assemblies from sorghum and maize. Although these gene copies are preserved on both chromosomes, their expression patterns have diverged. When the gene order of rice chromosomes 11 and 12 was compared to wheat gene loci, significant synteny between these orthologous regions was detected, illustrating the presence of conserved genes alternating with recently evolved genes.ConclusionBecause the resistance and defense response genes, enriched on these chromosomes relative to the whole genome, also occur in clusters, they provide a preferred target for breeding durable disease resistance in rice and the isolation of their allelic variants. The recent duplication of a large chromosomal segment coupled with the high density of disease resistance gene clusters makes this the most recently evolved part of the rice genome. Based on syntenic alignments of these chromosomes, rice chromosome 11 and 12 do not appear to have resulted from a single whole-genome duplication event as previously suggested.
Journal of Virology | 2009
Elodie Ghedin; Adam Fitch; Alex Boyne; Sara B. Griesemer; Jay V. DePasse; Jayati Bera; Xu Zhang; Rebecca A. Halpin; Marita Smit; Lance C. Jennings; Kirsten St. George; Edward C. Holmes; David J. Spiro
ABSTRACT The emergence of viral infections with potentially devastating consequences for human health is highly dependent on their underlying evolutionary dynamics. One likely scenario for an avian influenza virus, such as A/H5N1, to evolve to one capable of human-to-human transmission is through the acquisition of genetic material from the A/H1N1 or A/H3N2 subtypes already circulating in human populations. This would require that viruses of both subtypes coinfect the same cells, generating a mixed infection, and then reassort. Determining the nature and frequency of mixed infection with influenza virus is therefore central to understanding the emergence of pandemic, antigenic, and drug-resistant strains. To better understand the potential for such events, we explored patterns of intrahost genetic diversity in recently circulating strains of human influenza virus. By analyzing multiple viral genome sequences sampled from individual influenza patients we reveal a high level of mixed infection, including diverse lineages of the same influenza virus subtype, drug-resistant and -sensitive strains, those that are likely to differ in antigenicity, and even viruses of different influenza virus types (A and B). These results reveal that individuals can harbor influenza viruses that differ in major phenotypic properties, including those that are antigenically distinct and those that differ in their sensitivity to antiviral agents.
PLOS Pathogens | 2008
Martha I. Nelson; Laurel Edelman; David J. Spiro; Alex Boyne; Jayati Bera; Rebecca A. Halpin; Elodie Ghedin; Mark A. Miller; Lone Simonsen; Cécile Viboud; Edward C. Holmes
To determine the spatial and temporal dynamics of influenza A virus during a single epidemic, we examined whole-genome sequences of 284 A/H1N1 and 69 A/H3N2 viruses collected across the continental United States during the 2006–2007 influenza season, representing the largest study of its kind undertaken to date. A phylogenetic analysis revealed that multiple clades of both A/H1N1 and A/H3N2 entered and co-circulated in the United States during this season, even in localities that are distant from major metropolitan areas, and with no clear pattern of spatial spread. In addition, co-circulating clades of the same subtype exchanged genome segments through reassortment, producing both a minor clade of A/H3N2 viruses that appears to have re-acquired sensitivity to the adamantane class of antiviral drugs, as well as a likely antigenically distinct A/H1N1 clade that became globally dominant following this season. Overall, the co-circulation of multiple viral clades during the 2006–2007 epidemic season revealed patterns of spatial spread that are far more complex than observed previously, and suggests a major role for both migration and reassortment in shaping the epidemiological dynamics of human influenza A virus.
PLOS ONE | 2011
Jihui Ping; Liya Keleta; Nicole E. Forbes; Samar K Dankar; Stecho W; Shaun Tyler; Yan Zhou; Lorne Babiuk; Hana Weingartl; Rebecca A. Halpin; Alex Boyne; Jayati Bera; Jessicah Hostetler; Nadia Fedorova; Katie Proudfoot; Dan A. Katzel; Timothy B. Stockwell; Elodie Ghedin; David J. Spiro; Earl G. Brown
Adaptive evolution is characterized by positive and parallel, or repeated selection of mutations. Mouse adaptation of influenza A virus (IAV) produces virulent mutants that demonstrate positive and parallel evolution of mutations in the hemagglutinin (HA) receptor and non-structural protein 1 (NS1) interferon antagonist genes. We now present a genomic analysis of all 11 genes of 39 mouse adapted IAV variants from 10 replicate adaptation experiments. Mutations were mapped on the primary and structural maps of each protein and specific mutations were validated with respect to virulence, replication, and RNA polymerase activity. Mouse adapted (MA) variants obtained after 12 or 20–21 serial infections acquired on average 5.8 and 7.9 nonsynonymous mutations per genome of 11 genes, respectively. Among a total of 115 nonsynonymous mutations, 51 demonstrated properties of natural selection including 27 parallel mutations. The greatest degree of parallel evolution occurred in the HA receptor and ribonucleocapsid components, polymerase subunits (PB1, PB2, PA) and NP. Mutations occurred in host nuclear trafficking factor binding sites as well as sites of virus-virus protein subunit interaction for NP, NS1, HA and NA proteins. Adaptive regions included cap binding and endonuclease domains in the PB2 and PA polymerase subunits. Four mutations in NS1 resulted in loss of binding to the host cleavage and polyadenylation specificity factor (CPSF30) suggesting that a reduction in inhibition of host gene expression was being selected. The most prevalent mutations in PB2 and NP were shown to increase virulence but differed in their ability to enhance replication and demonstrated epistatic effects. Several positively selected RNA polymerase mutations demonstrated increased virulence associated with >300% enhanced polymerase activity. Adaptive mutations that control host range and virulence were identified by their repeated selection to comprise a defined model for studying IAV evolution to increased virulence in the mouse.
Journal of Clinical Microbiology | 2014
Bin Zhou; Xudong Lin; Wei Wang; Rebecca A. Halpin; Jayati Bera; Timothy B. Stockwell; Ian G. Barr; David E. Wentworth
ABSTRACT Although human influenza B virus (IBV) is a significant human pathogen, its great genetic diversity has limited our ability to universally amplify the entire genome for subsequent sequencing or vaccine production. The generation of sequence data via next-generation approaches and the rapid cloning of viral genes are critical for basic research, diagnostics, antiviral drugs, and vaccines to combat IBV. To overcome the difficulty of amplifying the diverse and ever-changing IBV genome, we developed and optimized techniques that amplify the complete segmented negative-sense RNA genome from any IBV strain in a single tube/well (IBV genomic amplification [IBV-GA]). Amplicons for >1,000 diverse IBV genomes from different sample types (e.g., clinical specimens) were generated and sequenced using this robust technology. These approaches are sensitive, robust, and sequence independent (i.e., universally amplify past, present, and future IBVs), which facilitates next-generation sequencing and advanced genomic diagnostics. Importantly, special terminal sequences engineered into the optimized IBV-GA2 products also enable ligation-free cloning to rapidly generate reverse-genetics plasmids, which can be used for the rescue of recombinant viruses and/or the creation of vaccine seed stock.
PLOS ONE | 2015
Michael E. Bose; Jie He; Susmita Shrivastava; Martha I. Nelson; Jayati Bera; Rebecca A. Halpin; Christopher D. Town; Hernan Lorenzi; Daniel E. Noyola; Valeria Falcone; Giuseppe Gerna; Hans De Beenhouwer; Cristina Videla; Tuckweng Kok; Marietjie Venter; John V. Williams; Kelly J. Henrickson
Background Human respiratory syncytial virus (RSV) is the leading cause of respiratory tract infections in children globally, with nearly all children experiencing at least one infection by the age of two. Partial sequencing of the attachment glycoprotein gene is conducted routinely for genotyping, but relatively few whole genome sequences are available for RSV. The goal of our study was to sequence the genomes of RSV strains collected from multiple countries to further understand the global diversity of RSV at a whole-genome level. Methods We collected RSV samples and isolates from Mexico, Argentina, Belgium, Italy, Germany, Australia, South Africa, and the USA from the years 1998-2010. Both Sanger and next-generation sequencing with the Illumina and 454 platforms were used to sequence the whole genomes of RSV A and B. Phylogenetic analyses were performed using the Bayesian and maximum likelihood methods of phylogenetic inference. Results We sequenced the genomes of 34 RSVA and 23 RSVB viruses. Phylogenetic analysis showed that the RSVA genome evolves at an estimated rate of 6.72 × 10-4 substitutions/site/year (95% HPD 5.61 × 10-4 to 7.6 × 10-4) and for RSVB the evolutionary rate was 7.69 × 10-4 substitutions/site/year (95% HPD 6.81 × 10-4 to 8.62 × 10-4). We found multiple clades co-circulating globally for both RSV A and B. The predominant clades were GA2 and GA5 for RSVA and BA for RSVB. Conclusions Our analyses showed that RSV circulates on a global scale with the same predominant clades of viruses being found in countries around the world. However, the distribution of clades can change rapidly as new strains emerge. We did not observe a strong spatial structure in our trees, with the same three main clades of RSV co-circulating globally, suggesting that the evolution of RSV is not strongly regionalized.
Virology Journal | 2012
Kelvin Li; Susmita Shrivastava; Anushka Brownley; Dan A. Katzel; Jayati Bera; Anh T. Nguyen; Vishal Thovarai; Rebecca A. Halpin; Timothy B. Stockwell
BackgroundIn a high-throughput environment, to PCR amplify and sequence a large set of viral isolates from populations that are potentially heterogeneous and continuously evolving, the use of degenerate PCR primers is an important strategy. Degenerate primers allow for the PCR amplification of a wider range of viral isolates with only one set of pre-mixed primers, thus increasing amplification success rates and minimizing the necessity for genome finishing activities. To successfully select a large set of degenerate PCR primers necessary to tile across an entire viral genome and maximize their success, this process is best performed computationally.ResultsWe have developed a fully automated degenerate PCR primer design system that plays a key role in the J. Craig Venter Institute’s (JCVI) high-throughput viral sequencing pipeline. A consensus viral genome, or a set of consensus segment sequences in the case of a segmented virus, is specified using IUPAC ambiguity codes in the consensus template sequence to represent the allelic diversity of the target population. PCR primer pairs are then selected computationally to produce a minimal amplicon set capable of tiling across the full length of the specified target region. As part of the tiling process, primer pairs are computationally screened to meet the criteria for successful PCR with one of two described amplification protocols. The actual sequencing success rates for designed primers for measles virus, mumps virus, human parainfluenza virus 1 and 3, human respiratory syncytial virus A and B and human metapneumovirus are described, where >90% of designed primer pairs were able to consistently successfully amplify >75% of the isolates.ConclusionsAugmenting our previously developed and published JCVI Primer Design Pipeline, we achieved similarly high sequencing success rates with only minor software modifications. The recommended methodology for the construction of the consensus sequence that encapsulates the allelic variation of the targeted population and is a key step prior to designing degenerate primers is also formally described.
Virology Journal | 2013
Emily Abernathy; Min-hsin Chen; Jayati Bera; Susmita Shrivastava; Ewen F. Kirkness; Qi Zheng; William J. Bellini; Joseph Icenogle
Rubella virus is the causative agent of rubella, a mild rash illness, and a potent teratogenic agent when contracted by a pregnant woman. Global rubella control programs target the reduction and elimination of congenital rubella syndrome. Phylogenetic analysis of partial sequences of rubella viruses has contributed to virus surveillance efforts and played an important role in demonstrating that indigenous rubella viruses have been eliminated in the United States. Sixteen wild-type rubella viruses were chosen for whole genome sequencing. All 16 viruses were collected in the United States from 1961 to 2009 and are from 8 of the 13 known rubella genotypes. Phylogenetic analysis of 30 whole genome sequences produced a maximum likelihood tree giving high bootstrap values for all genotypes except provisional genotype 1a. Comparison of the 16 new complete sequences and 14 previously sequenced wild-type viruses found regions with clusters of variable amino acids. The 5′ 250 nucleotides of the genome are more conserved than any other part of the genome. Genotype specific deletions in the untranslated region between the non-structural and structural open reading frames were observed for genotypes 2B and genotype 1G. No evidence was seen for recombination events among the 30 viruses. The analysis presented here is consistent with previous reports on the genetic characterization of rubella virus genomes. Conserved and variable regions were identified and additional evidence for genotype specific nucleotide deletions in the intergenic region was found. Phylogenetic analysis confirmed genotype groupings originally based on structural protein coding region sequences, which provides support for the WHO nomenclature for genetic characterization of wild-type rubella viruses.
Scientific Reports | 2016
Seth Schobel; Karla M. Stucker; Martin L. Moore; Larry J. Anderson; Emma K. Larkin; Jyoti Shankar; Jayati Bera; Vinita Puri; Christian Rosas-Salazar; Rebecca A. Halpin; Nadia Fedorova; Susmita Shrivastava; Timothy B. Stockwell; R. Stokes Peebles; Tina V. Hartert; Suman R. Das
Respiratory Syncytial Virus (RSV) is responsible for considerable morbidity and mortality worldwide and is the most important respiratory viral pathogen in infants. Extensive sequence variability within and between RSV group A and B viruses and the ability of multiple clades and sub-clades of RSV to co-circulate are likely mechanisms contributing to the evasion of herd immunity. Surveillance and large-scale whole-genome sequencing of RSV is currently limited but would help identify its evolutionary dynamics and sites of selective immune evasion. In this study, we performed complete-genome next-generation sequencing of 92 RSV isolates from infants in central Tennessee during the 2012–2014 RSV seasons. We identified multiple co-circulating clades of RSV from both the A and B groups. Each clade is defined by signature N- and O-linked glycosylation patterns. Analyses of specific RSV genes revealed high rates of positive selection in the attachment (G) gene. We identified RSV-A viruses in circulation with and without a recently reported 72-nucleotide G gene sequence duplication. Furthermore, we show evidence of convergent evolution of G gene sequence duplication and fixation over time, which suggests a potential fitness advantage of RSV with the G sequence duplication.
Journal of Virology | 2010
Elodie Ghedin; David E. Wentworth; Rebecca A. Halpin; Xudong Lin; Jayati Bera; Jay V. DePasse; Adam Fitch; Sara B. Griesemer; Erin Hine; Daniel A. Katzel; Larry Overton; Kathleen Proudfoot; Jeffrey Sitz; Bridget Szczypinski; Kirsten StGeorge; David J. Spiro; Edward C. Holmes
ABSTRACT The initial wave of swine-origin influenza A virus (pandemic H1N1/09) in the United States during the spring and summer of 2009 also resulted in an increased vigilance and sampling of seasonal influenza viruses (H1N1 and H3N2), even though they are normally characterized by very low incidence outside of the winter months. To explore the nature of virus evolution during this influenza “off-season,” we conducted a phylogenetic analysis of H1N1 and H3N2 sequences sampled during April to June 2009 in New York State. Our analysis revealed that multiple lineages of both viruses were introduced and cocirculated during this time, as is typical of influenza virus during the winter. Strikingly, however, we also found strong evidence for the presence of a large transmission chain of H3N2 viruses centered on the south-east of New York State and which continued until at least 1 June 2009. These results suggest that the unseasonal transmission of influenza A viruses may be more widespread than is usually supposed.
Collaboration
Dive into the Jayati Bera's collaboration.
National Center for Immunization and Respiratory Diseases
View shared research outputs