Jean-Damien Chapon
STMicroelectronics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean-Damien Chapon.
Advances in Resist Technology and Processing XXI | 2004
Isabelle Guilmeau; Alice F. Guerrero; Vincent Blain; Stephanie Kremer; Vincent Vachellerie; Damien Lenoble; Patricia Nogueira; Sebastien Mougel; Jean-Damien Chapon
As integrated circuit manufacturing moves towards smaller feature sizes, ion implant photo levels are becoming critical layers with lithography demands as tight as 180 nm line/space patterning capability. Advanced materials are required for junction levels to improve the critical dimension (CD) control and resolution. Dyed KrF resists are reaching the limit in their ability to control CD variation due to parasitic light reflections from the underlayer. The use of a bottom anti-reflective coating (BARC) under KrF resists reduces the reflective effect from the oxide substrate, leading to better CD control. Unfortunately, a standard organic BARC that requires plasma etch before implantation can cause silicon substrate oxidation damage as well as increased wafer cost due to additional process steps. The use of a new developer-soluble organic BARC shows an advantage in optics without degrading the underlying substrate before implantation. The advantage of using an ESCAP resist in combination with a wet-developable BARC over the single resist layer scheme has been clearly demonstrated and the system is well adapted to ion implant layers for 65 nm technology.
Proceedings of SPIE | 2007
Vincent Farys; Scott Warrick; Catherine Chaton; Jean-Damien Chapon
The merits of hyper NA imaging using 193 nm exposure wavelength with water immersion for 45 nm and 32 nm nodes is clear. However, the challenge remains CD control at hyper NA and the development of ARC stacks to support not only lithographic response but also device integrations. Extreme off-axis illumination, polarization, and dense pitches of the C045 and C032 nodes show a significant degradation of reflection and CD control and a significant loss of resolution. Consequently, hyper NA patterning requires the development of a new ARC to improve the overall CD control. Thus, a single ARC layer could not ensure the reflectivity condition, and ARC stacks must now be decomposed into two or three components in order to suppress reflectivity through a wide range of incidence angle. In a previous work, we presented the advantage of using an antireflective based on CVD organic - inorganic stacks. This paper presents an upgrade of this type of stack, applied to 1.2NA imaging. We will show stack reflectivity simulations based on S-matrix approach. The capabilities of the CVD tools have been taken into account in the simulations in order to define a reflectivity process window. We will present 1.2NA lithography with different optimized ARC stacks, comparing potential capability and CD control in conjunction with the immersion lithography for 45 nm and 32 nm nodes.
Photomask and Next Generation Lithography Mask Technology XII | 2005
Jerome Belledent; James Word; Yorick Trouiller; Christophe Couderc; Corinne Miramond; Olivier Toublan; Jean-Damien Chapon; Stanislas Baron; Amandine Borjon; Franck Foussadier; Christian Gardin; Kevin Lucas; Kyle Patterson; Yves Rody; Frank Sundermann; Jean-Christophe Urbani
Specifications for CD control on current technology nodes have become very tight, especially for the gate level. Therefore all systematic errors during the patterning process should be corrected. For a long time, CD variations induced by any change in the local periodicity have been successfully addressed through model or/and rule based corrections. However, if long-range effects (stray light, etch, and mask writing process...) are often monitored, they are seldom taken into account in OPC flows. For the purpose of our study, a test mask has been designed to measure these latter effects separating the contributions of three different process steps (mask writing, exposure and etch). The resulting induced CD errors for several patterns are compared to the allowed error budget. Then, a methodology, usable in standard OPC flows, is proposed to calculate the required correction for any feature in any layout. The accuracy of the method will be demonstrated through experimental results.
Design and process integration for microelectronic manufacturing. Conference | 2005
Yorick Trouiller; Thierry Devoivre; Jerome Belledent; Franck Foussadier; Amandine Borjon; Kyle Patterson; Kevin Lucas; Christophe Couderc; Frank Sundermann; Jean-Christophe Urbani; Stanislas Baron; Yves Rody; Jean-Damien Chapon; F. Arnaud; Jorge Entradas
In the context of 65nm logic technology where gate CD control budget requirements are below 5nm, it is mandatory to properly quantify the impact of the 2D effects on the electrical behavior of the transistor [1,2]. This study uses the following sequence to estimate the impact on transistor performance: 1) A lithographic simulation is performed after OPC (Optical Proximity Correction) of active and poly using a calibrated model at best conditions. Some extrapolation of this model can also be used to assess marginalities due to process window (focus, dose, mask errors, and overlay). In our case study, we mainly checked the poly to active misalignment effects. 2) Electrical behavior of the transistor (Ion, Ioff, Vt) is calculated based on a derivative spice model using the simulated image of the gate as an input. In most of the cases Ion analysis, rather than Vt or leakage, gives sufficient information for patterning optimization. We have demonstrated the benefit of this approach with two different examples: -design rule trade-off : we estimated the impact with and without misalignment of critical rules like poly corner to active distance, active corner to poly distance or minimum space between small transistor and big transistor. -Library standard cell debugging: we applied this methodology to the most critical one hundred transistors of our standard cell libraries and calculate Ion behavior with and without misalignment between active and poly. We compared two scanner illumination modes and two OPC versions based on the behavior of the one hundred transistors. We were able to see the benefits of one illumination, and also the improvement in the OPC maturity.
Optical Microlithography XVI | 2003
Yorick Trouiller; Jerome Belledent; Jean-Damien Chapon; V. Rousset; Yves Rody; Serdar Manakli; Pierre-Jerome Goirand
xIn order to address some specific issues related to gate level printing of the 0.09μm logic process, the following mask and illumination solutions have been evaluated. Annular and Quasar illumination using binary mask with assist feature and the CODE (Complementary Double Exposure) technique. Two different linewidths have been targeted after lithography: 100nm and 80nm respectively for lowpower and high-speed applications. The different solutions have been compared for their printing performance through pitch for Energy Latitude, Depth of Focus and Mask Error Enhancement Factor. The assist bar printability and line-end control was also determined. For printing the 100nm target, all tested options can be used, with a preference for Quasar illumination for the gain in Depth of Focus and MEEF. For the 80nm target however, only the CODE technique with Quasar give sufficient good results for the critical litho parameters.
SPIE's 27th Annual International Symposium on Microlithography | 2002
Serdar Manakli; Yorick Trouiller; Olivier Toublan; Patrick Schiavone; Corinne Miramond; Yves Rody; Frank Sundermann; Jean-Damien Chapon; Pierre-Jerome Goirand
To follow the accelerating ITRS roadmap, microprocessor and DRAM manufacturers have introduced the Alternating Phase shift mask (Alt.PSM) resolution enhancement technique (RET) in order to be able to print the gate level on sub 130nm devices. This is done at very high mask costs, a long cycle time and poor guarantee to get defect free masks. S. Nakao has proposed a new RET. He showed that sub 0.1um features could be printed with good process latitudes using a double binary mask printing technique. This solution is very interesting, but is applicable to isolated structures only. To overcome this limitation, we have developed an extension to this technique called CODE. This combines Nakaos technique and the use of assist features removed in a second subsequent exposure. This new solution enables us to print isolated as well as dense features on advanced devices using two binary masks. This paper will describe all the steps required to develop the CODE application. (1) Determination of the optimal optical settings, (2) Determination of optimal assist feature size and placement, (3) Layout rules generation, (4)Application of the layout rules to a complex layout, using the Mentor Graphics Calibre environment, (5) Experimental verification using a 193nm 0.63NA scanner.
Proceedings of SPIE | 2008
Bertrand Le Gratiet; P. Gouraud; Enrique Aparicio; Laurène Babaud; Karen Dabertrand; Mathieu Touchet; Stephanie Kremer; Catherine Chaton; Franck Foussadier; Frank Sundermann; Jean Massin; Jean-Damien Chapon; Maxime Gatefait; Blandine Minghetti; J. Decaunes; Daniel Boutin
This paper present an evaluation of our CMOS 45nm gate patterning process performance based on immersion lithography in a production environment. A CD budget breakdown is shown detailing lot to lot, wafer to wafer, intrawafer, intrafield and proximity CD uniformity characterization. Emphasis is given on scatterometry library development and deployment. We also look more into detail to focus effect on CD control. Finally status of overlay performance with immersion lithography is also presented.
Proceedings of SPIE | 2008
Jean Massin; Bastien Orlando; Maxime Gatefait; Jean-Damien Chapon; Bertrand Le-Gratiet; Blandine Minghetti; Pierre-Jerome Goirand
In this paper we performed an analysis of various data collection preformed on C045 production lots in order to assess the influence of STI oxide layers on the CD uniformity of implant photolithography layers. Our final purpose is to show whether the DOSE MAPPERTM software option for interfiled dose correction available on ASML scanners combined with a run-to-run feed-forward regulation loop could improve global CD uniformity on C045 implants layers. After a brief presentation of the C045 implants context the results of the analysis are presented : swing curves, process windows analysis, and intra-die CD measurements are presented. The conclusion of the analysis is that it is not possible, in the current C045 industrial environment, to use a robust and general method of interfield dose correction in order to achieve a better global CD uniformity.
Proceedings of SPIE, the International Society for Optical Engineering | 2007
Jean-Christophe Urbani; Jean-Damien Chapon; Jerome Belledent; Amandine Borjon; Christophe Couderc; Jean-Luc Di-Maria; Vincent Farys; Franck Foussadier; Christian Gardin; G. Kerrien; Laurent LeCam; Catherine Martinelli; Patrick Montgomery; Nicolo Morgana; Jonathan Planchot; F. Robert; Yves Rody; Mazen Saied; Frank Sundermann; Yorick Trouiller; Florent Vautrin; Bill Wilkinson; Emek Yesilada
Patterning isolated trenches for bright field layers such as the active layer has always been difficult for lithographers. This patterning is even more challenging for advanced technologies such as the 45-nm node where most of the process optimization is done for minimum pitch dense lines. Similar to the use of scattering-bars to assist isolated lines structures, we can use inverse Sub Resolution Assist Features (SRAF) to assist the patterning of isolated trenches structures. Full characterization studies on the C45 Active layer demonstrate the benefits and potential issues of this technique: Screen Inverse SRAF parameters (size, distance to main feature) utilizing optical simulation; Verify simulation predictions and ensure sufficient improvement in Depth of Focus and Exposure latitude with silicon process window analysis; Define Inverse SRAF OPC generation script parameters and validate, with accurate on silicon, measurement characterization of specific test patterns; Maskshop manufacturability through CD measurements and inspection capability. Finally, initial silicon results from a 45nm mask are given with suggestions for additional optimization of inverse SRAF for trenches.
Metrology, Inspection, and Process Control for Microlithography XXXII | 2018
Benjamin Duclaux; Jean de Caunes; Robin Perrier; Bertrand Le Gratiet; Jean-Damien Chapon; Maxime Gatefait; Cedric Monget
Derivative technology like embedded Non-Volatile Memories (eNVM) is raising new types of challenges on the “more than Moore” path. By its construction: overlay is critical across multiple layers, by its running mode: usage of high voltage are stressing leakages and breakdown, and finally with its targeted market: Automotive, Industry automation, secure transactions… which are all requesting high device reliability (typically below 1ppm level). As a consequence, overlay specifications are tights, not only between one layer and its reference, but also among the critical layers sharing the same reference. This work describes a broad picture of the key points for multilayer overlay process control in the case of a 28nm FD-SOI technology and its derivative flows. First, the alignment trees of the different flow options have been optimized using a realistic process assumptions calculation for indirect overlay. Then, in the case of a complex alignment tree involving heterogeneous scanner toolset, criticality of tool matching between reference layer and critical layers of the flow has been highlighted. Improving the APC control loops of these multilayer dependencies has been studied with simulations of feed-forward as well as implementing new rework algorithm based on multi-measures. Finally, the management of these measurement steps raises some issues for inline support and using calculations or “virtual overlay” could help to gain some tool capability. A first step towards multilayer overlay process control has been taken.