Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean Monlong is active.

Publication


Featured researches published by Jean Monlong.


Nature | 2013

Transcriptome and genome sequencing uncovers functional variation in humans.

Tuuli Lappalainen; Michael Sammeth; Marc R. Friedländer; Peter A. C. 't Hoen; Jean Monlong; Manuel A. Rivas; Mar Gonzàlez-Porta; Natalja Kurbatova; Thasso Griebel; Pedro G. Ferreira; Matthias Barann; Thomas Wieland; Liliana Greger; M. van Iterson; Jonas Carlsson Almlöf; Paolo Ribeca; Irina Pulyakhina; Daniela Esser; Thomas Giger; Andrew Tikhonov; Marc Sultan; G. Bertier; Daniel G. MacArthur; Monkol Lek; Esther Lizano; Henk P. J. Buermans; Ismael Padioleau; Thomas Schwarzmayr; Olof Karlberg; Halit Ongen

Genome sequencing projects are discovering millions of genetic variants in humans, and interpretation of their functional effects is essential for understanding the genetic basis of variation in human traits. Here we report sequencing and deep analysis of messenger RNA and microRNA from lymphoblastoid cell lines of 462 individuals from the 1000 Genomes Project—the first uniformly processed high-throughput RNA-sequencing data from multiple human populations with high-quality genome sequences. We discover extremely widespread genetic variation affecting the regulation of most genes, with transcript structure and expression level variation being equally common but genetically largely independent. Our characterization of causal regulatory variation sheds light on the cellular mechanisms of regulatory and loss-of-function variation, and allows us to infer putative causal variants for dozens of disease-associated loci. Altogether, this study provides a deep understanding of the cellular mechanisms of transcriptome variation and of the landscape of functional variants in the human genome.


Science | 2015

Human genomics. The human transcriptome across tissues and individuals.

Marta Melé; Pedro G. Ferreira; Ferran Reverter; David S. DeLuca; Jean Monlong; Michael Sammeth; Taylor R. Young; Jakob M. Goldmann; Dmitri D. Pervouchine; Timothy J. Sullivan; Rory Johnson; Ayellet V. Segrè; Sarah Djebali; Anastasia Niarchou; Fred A. Wright; Tuuli Lappalainen; Miquel Calvo; Gad Getz; Emmanouil T. Dermitzakis; Kristin Ardlie; Roderic Guigó

Expression, genetic variation, and tissues Human genomes show extensive genetic variation across individuals, but we have only just started documenting the effects of this variation on the regulation of gene expression. Furthermore, only a few tissues have been examined per genetic variant. In order to examine how genetic expression varies among tissues within individuals, the Genotype-Tissue Expression (GTEx) Consortium collected 1641 postmortem samples covering 54 body sites from 175 individuals. They identified quantitative genetic traits that affect gene expression and determined which of these exhibit tissue-specific expression patterns. Melé et al. measured how transcription varies among tissues, and Rivas et al. looked at how truncated protein variants affect expression across tissues. Science, this issue p. 648, p. 660, p. 666; see also p. 640 RNA expression documents patterns of human transcriptome variation across individuals and tissues. [Also see Perspective by Gibson] Transcriptional regulation and posttranscriptional processing underlie many cellular and organismal phenotypes. We used RNA sequence data generated by Genotype-Tissue Expression (GTEx) project to investigate the patterns of transcriptome variation across individuals and tissues. Tissues exhibit characteristic transcriptional signatures that show stability in postmortem samples. These signatures are dominated by a relatively small number of genes—which is most clearly seen in blood—though few are exclusive to a particular tissue and vary more across tissues than individuals. Genes exhibiting high interindividual expression variation include disease candidates associated with sex, ethnicity, and age. Primary transcription is the major driver of cellular specificity, with splicing playing mostly a complementary role; except for the brain, which exhibits a more divergent splicing program. Variation in splicing, despite its stochasticity, may play in contrast a comparatively greater role in defining individual phenotypes.


Genome Research | 2014

Transcriptome characterization by RNA sequencing identifies a major molecular and clinical subdivision in chronic lymphocytic leukemia

Pedro G. Ferreira; Pedro Jares; Daniel Rico; Gonzalo Gómez-López; Alejandra Martínez-Trillos; Neus Villamor; Simone Ecker; Abel Gonzalez-Perez; David G. Knowles; Jean Monlong; Rory Johnson; Víctor Quesada; Sarah Djebali; Panagiotis Papasaikas; Mónica López-Guerra; Dolors Colomer; Cristina Royo; Maite Cazorla; Magda Pinyol; Guillem Clot; Marta Aymerich; María Rozman; Marta Kulis; David Tamborero; Anaı̈s Gouin; Julie Blanc; Marta Gut; Ivo Gut; Xose S. Puente; David G. Pisano

Chronic lymphocytic leukemia (CLL) has heterogeneous clinical and biological behavior. Whole-genome and -exome sequencing has contributed to the characterization of the mutational spectrum of the disease, but the underlying transcriptional profile is still poorly understood. We have performed deep RNA sequencing in different subpopulations of normal B-lymphocytes and CLL cells from a cohort of 98 patients, and characterized the CLL transcriptional landscape with unprecedented resolution. We detected thousands of transcriptional elements differentially expressed between the CLL and normal B cells, including protein-coding genes, noncoding RNAs, and pseudogenes. Transposable elements are globally derepressed in CLL cells. In addition, two thousand genes-most of which are not differentially expressed-exhibit CLL-specific splicing patterns. Genes involved in metabolic pathways showed higher expression in CLL, while genes related to spliceosome, proteasome, and ribosome were among the most down-regulated in CLL. Clustering of the CLL samples according to RNA-seq derived gene expression levels unveiled two robust molecular subgroups, C1 and C2. C1/C2 subgroups and the mutational status of the immunoglobulin heavy variable (IGHV) region were the only independent variables in predicting time to treatment in a multivariate analysis with main clinico-biological features. This subdivision was validated in an independent cohort of patients monitored through DNA microarrays. Further analysis shows that B-cell receptor (BCR) activation in the microenvironment of the lymph node may be at the origin of the C1/C2 differences.


Nature Communications | 2014

Identification of genetic variants associated with alternative splicing using sQTLseekeR

Jean Monlong; Miquel Calvo; Pedro G. Ferreira; Roderic Guigó

Identification of genetic variants affecting splicing in RNA sequencing population studies is still in its infancy. Splicing phenotype is more complex than gene expression and ought to be treated as a multivariate phenotype to be recapitulated completely. Here we represent the splicing pattern of a gene as the distribution of the relative abundances of a gene’s alternative transcript isoforms. We develop a statistical framework that uses a distance-based approach to compute the variability of splicing ratios across observations, and a non-parametric analogue to multivariate analysis of variance. We implement this approach in the R package sQTLseekeR and use it to analyze RNA-Seq data from the Geuvadis project in 465 individuals. We identify hundreds of single nucleotide polymorphisms (SNPs) as splicing QTLs (sQTLs), including some falling in genome-wide association study SNPs. By developing the appropriate metrics, we show that sQTLseekeR compares favorably with existing methods that rely on univariate approaches, predicting variants that behave as expected from mutations affecting splicing.


Nature Communications | 2015

Enhanced transcriptome maps from multiple mouse tissues reveal evolutionary constraint in gene expression

Dmitri D. Pervouchine; Sarah Djebali; Alessandra Breschi; Carrie A. Davis; Pablo Prieto Barja; Alexander Dobin; Andrea Tanzer; Julien Lagarde; Chris Zaleski; Lei Hoon See; Meagan Fastuca; Jorg Drenkow; Huaien Wang; Giovanni Bussotti; Baikang Pei; Suganthi Balasubramanian; Jean Monlong; Arif Harmanci; Mark Gerstein; Michael Beer; Cedric Notredame; Roderic Guigó; Thomas R. Gingeras

Mice have been a long-standing model for human biology and disease. Here we characterize, by RNA sequencing, the transcriptional profiles of a large and heterogeneous collection of mouse tissues, augmenting the mouse transcriptome with thousands of novel transcript candidates. Comparison with transcriptome profiles in human cell lines reveals substantial conservation of transcriptional programmes, and uncovers a distinct class of genes with levels of expression that have been constrained early in vertebrate evolution. This core set of genes captures a substantial fraction of the transcriptional output of mammalian cells, and participates in basic functional and structural housekeeping processes common to all cell types. Perturbation of these constrained genes is associated with significant phenotypes including embryonic lethality and cancer. Evolutionary constraint in gene expression levels is not reflected in the conservation of the genomic sequences, but is associated with conserved epigenetic marking, as well as with characteristic post-transcriptional regulatory programme, in which sub-cellular localization and alternative splicing play comparatively large roles.


Scientific Reports | 2017

Loss of chromosome Y leads to down regulation of KDM5D and KDM6C epigenetic modifiers in clear cell renal cell carcinoma

Madeleine Arseneault; Jean Monlong; Naveen S. Vasudev; Ruhina S. Laskar; Maryam Safisamghabadi; Patricia Harnden; Lars Egevad; Nazanin Nourbehesht; Pudchalaluck Panichnantakul; Ivana Holcatova; Antonin Brisuda; Vladimir Janout; Helena Kollárová; Lenka Foretova; Marie Navratilova; Dana Mates; Viorel Jinga; David Zaridze; Anush Mukeria; Pouria Jandaghi; Paul Brennan; Alvis Brazma; Jörg Tost; Ghislaine Scelo; Rosamonde E. Banks; Mark Lathrop; Guillaume Bourque; Yasser Riazalhosseini

Recent genomic studies of sporadic clear cell renal cell carcinoma (ccRCC) have uncovered novel driver genes and pathways. Given the unequal incidence rates among men and women (male:female incidence ratio approaches 2:1), we compared the genome-wide distribution of the chromosomal abnormalities in both sexes. We observed a higher frequency for the somatic recurrent chromosomal copy number variations (CNVs) of autosomes in male subjects, whereas somatic loss of chromosome X was detected exclusively in female patients (17.1%). Furthermore, somatic loss of chromosome Y (LOY) was detected in about 40% of male subjects, while mosaic LOY was detected in DNA isolated from peripheral blood in 9.6% of them, and was the only recurrent CNV in constitutional DNA samples. LOY in constitutional DNA, but not in tumor DNA was associated with older age. Amongst Y-linked genes that were downregulated due to LOY, KDM5D and KDM6C epigenetic modifiers have functionally-similar X-linked homologs whose deficiency is involved in ccRCC progression. Our findings establish somatic LOY as a highly recurrent genetic defect in ccRCC that leads to downregulation of hitherto unsuspected epigenetic factors, and suggest that different mechanisms may underlie the somatic and mosaic LOY observed in tumors and peripheral blood, respectively.


PLOS Genetics | 2018

Global characterization of copy number variants in epilepsy patients from whole genome sequencing

Jean Monlong; Simon Girard; Caroline Meloche; Maxime Cadieux-Dion; Danielle M. Andrade; Ron G. Lafrenière; Micheline Gravel; Dan Spiegelman; Alexandre Dionne-Laporte; Cyrus Boelman; Fadi F. Hamdan; Jacques L. Michaud; Guy A. Rouleau; Berge A. Minassian; Guillaume Bourque; Patrick Cossette

Epilepsy will affect nearly 3% of people at some point during their lifetime. Previous copy number variants (CNVs) studies of epilepsy have used array-based technology and were restricted to the detection of large or exonic events. In contrast, whole-genome sequencing (WGS) has the potential to more comprehensively profile CNVs but existing analytic methods suffer from limited accuracy. We show that this is in part due to the non-uniformity of read coverage, even after intra-sample normalization. To improve on this, we developed PopSV, an algorithm that uses multiple samples to control for technical variation and enables the robust detection of CNVs. Using WGS and PopSV, we performed a comprehensive characterization of CNVs in 198 individuals affected with epilepsy and 301 controls. For both large and small variants, we found an enrichment of rare exonic events in epilepsy patients, especially in genes with predicted loss-of-function intolerance. Notably, this genome-wide survey also revealed an enrichment of rare non-coding CNVs near previously known epilepsy genes. This enrichment was strongest for non-coding CNVs located within 100 Kbp of an epilepsy gene and in regions associated with changes in the gene expression, such as expression QTLs or DNase I hypersensitive sites. Finally, we report on 21 potentially damaging events that could be associated with known or new candidate epilepsy genes. Our results suggest that comprehensive sequence-based profiling of CNVs could help explain a larger fraction of epilepsy cases.


Nucleic Acids Research | 2018

Human copy number variants are enriched in regions of low mappability

Jean Monlong; Patrick Cossette; Caroline Meloche; Guy A. Rouleau; Simon Girard; Guillaume Bourque

Abstract Copy number variants (CNVs) are known to affect a large portion of the human genome and have been implicated in many diseases. Although whole-genome sequencing (WGS) can help identify CNVs, most analytical methods suffer from limited sensitivity and specificity, especially in regions of low mappability. To address this, we use PopSV, a CNV caller that relies on multiple samples to control for technical variation. We demonstrate that our calls are stable across different types of repeat-rich regions and validate the accuracy of our predictions using orthogonal approaches. Applying PopSV to 640 human genomes, we find that low-mappability regions are approximately 5 times more likely to harbor germline CNVs, in stark contrast to the nearly uniform distribution observed for somatic CNVs in 95 cancer genomes. In addition to known enrichments in segmental duplication and near centromeres and telomeres, we also report that CNVs are enriched in specific types of satellite and in some of the most recent families of transposable elements. Finally, using this comprehensive approach, we identify 3455 regions with recurrent CNVs that were missing from existing catalogs. In particular, we identify 347 genes with a novel exonic CNV in low-mappability regions, including 29 genes previously associated with disease.


bioRxiv | 2017

Pan-cancer analysis of whole genomes reveals driver rearrangements promoted by LINE-1 retrotransposition in human tumours

Bernardo Rodriguez-Martin; Eva G. Alvarez; Adrian Baez-Ortega; Jonas Demeulemeester; Young Seok Ju; Jorge Zamora; Harald Detering; Yilong Li; Gianmarco Contino; Stefan Dentro; Alicia L. Bruzos; Ana Dueso-Barroso; Daniel Ardeljan; Marta Tojo; Nicola D. Roberts; Miguel Blanco; Paul A.W. Edwards; Joachim Weischenfeldt; Martin Santamarina; Montserrat Puiggròs; Zechen Chong; Ken Chen; Eunjung Lee; Jeremiah Wala; Keiran Raine; Adam Butler; Sebastian M. Waszak; Fabio C. P. Navarro; Steven E. Schumacher; Jean Monlong

About half of all cancers have somatic integrations of retrotransposons. To characterize their role in oncogenesis, we analyzed the patterns and mechanisms of somatic retrotransposition in 2,954 cancer genomes from 37 histological cancer subtypes. We identified 19,166 somatically acquired retrotransposition events, affecting 35% of samples, and spanning a range of event types. L1 insertions emerged as the first most frequent type of somatic structural variation in esophageal adenocarcinoma, and the second most frequent in head-and-neck and colorectal cancers. Aberrant L1 integrations can delete megabase-scale regions of a chromosome, sometimes removing tumour suppressor genes, as well as inducing complex translocations and large-scale duplications. Somatic retrotranspositions can also initiate breakage-fusion-bridge cycles, leading to high-level amplification of oncogenes. These observations illuminate a relevant role of L1 retrotransposition in remodeling the cancer genome, with potential implications in the development of human tumours.


bioRxiv | 2014

Enhanced Transcriptome Maps from Multiple Mouse Tissues Reveal Evolutionary Constraint in Gene Expression for Thousands of Genes

Dmitri D. Pervouchine; Sarah Djebali; Alessandra Breschi; Carrie A. Davis; Pablo Prieto Barja; Alexander Dobin; Andrea Tanzer; Julien Lagarde; Chris Zaleski; Lei-Hoon See; Meagan Fastuca; Jorg Drenkow; Huaien Wang; Giovanni Bussotti; Baikang Pei; Suganthi Balasubramanian; Jean Monlong; Arif Harmanci; Mark Gerstein; Michael Beer; Cedric Notredame; Roderic Guigó; Thomas R. Gingeras

We characterized by RNA-seq the transcriptional profiles of a large and heterogeneous collection of mouse tissues, augmenting the mouse transcriptome with thousands of novel transcript candidates. Comparison with transcriptome profiles obtained in human cell lines reveals substantial conservation of transcriptional programs, and uncovers a distinct class of genes with levels of expression across cell types and species, that have been constrained early in vertebrate evolution. This core set of genes capture a substantial and constant fraction of the transcriptional output of mammalian cells, and participates in basic functional and structural housekeeping processes common to all cell types. Perturbation of these constrained genes is associated with significant phenotypes including embryonic lethality and cancer. Evolutionary constraint in gene expression levels is not reflected in the conservation of the genomic sequences, but is associated with strong and conserved epigenetic marking, as well as to a characteristic post-transcriptional regulatory program in which sub-cellular localization and alternative splicing play comparatively large roles.

Collaboration


Dive into the Jean Monlong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guy A. Rouleau

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge