Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean Nourrigat is active.

Publication


Featured researches published by Jean Nourrigat.


Communications in Partial Differential Equations | 1982

La condition de hörmander-khon pour les operateurs pseudo-differentiels

Pierre Bolley; Jacques Camus; Jean Nourrigat

© Journées Équations aux dérivées partielles, 1981, tous droits réservés. L’accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www. math.sciences.univ-nantes.fr/edpa/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.


arXiv: Analysis of PDEs | 2014

On bounded pseudodifferential operators in a high-dimensional setting

Laurent Amour; Lisette Jager; Jean Nourrigat

This work is concerned with extending the results of Calderon and Vaillancourt proving the boundedness of Weyl pseudodifferential operators Op W eyl h (F) in L 2 (R n). We state conditions under which the norm of such operators has an upper bound independent of n. To this aim, we apply a decomposition of the identity to the symbol F , thus obtaining a sum of operators of a hybrid type, each of them behaving as a Weyl operator with respect to some of the variables and as an anti-Wick operator with respect to the other ones. Then we establish upper bounds for these auxiliary operators, using suitably adapted classical methods like coherent states.


Analysis & PDE | 2013

The semiclassical limit of the time dependent Hartree–Fock equation: The Weyl symbol of the solution

Laurent Amour; Mohamed Khodja; Jean Nourrigat

We study the Wick symbol of a solution of the time dependent Hartree Fock equation, under weaker hypotheses than those needed for the Weyl symbol in the first paper with thesame title. With similar, we prove some kind of Ehrenfest theorem for observables that are not pseudo-differential operators.


Journal of Mathematical Physics | 2017

Weyl calculus in QED I. The unitary group

Laurent Amour; Richard Lascar; Jean Nourrigat

In this work, we consider fixed


Annales Henri Poincaré | 2001

Resonances of the Dirac Hamiltonian in the Non Relativistic Limit

Laurent Amour; R. Brummelhuis; Jean Nourrigat

1/2


Communications in Partial Differential Equations | 2005

Thermodynamic Limits for Hamiltonians Defined as Pseudodifferential Operators

Jean Nourrigat; Christophe Royer

spin particles interacting with the quantized radiation field in the context of quantum electrodynamics (QED). We investigate the time evolution operator in studying the reduced propagator (interaction picture). We first prove that this propagator belongs to the class of infinite dimensional Weyl pseudodifferential operators recently introduced in \cite {A-J-N} on Wiener spaces. We give a semiclassical expansion of the symbol of the reduced propagator up to any order with estimates on the remainder terms. Next, taking into account analyticity properties for the Weyl symbol of the reduced propagator, we derive estimates concerning transition probabilities between coherent states.


Journées équations aux dérivées partielles | 1988

Borne inférieure du spectre de l'opérateur de Schrödinger@@@Lower bound for the spectrum of the Schrödinger operator

Abderemane Mohamed; Jean Nourrigat

Abstract. For a Dirac operator in


Journées équations aux dérivées partielles | 1980

Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs

Bernard Helffer; Jean Nourrigat

{\Bbb R}^3


Journal D Analyse Mathematique | 2001

A necessary and sufficient condition for Melin’s inequality for a class of systems

Raymond Brummelhuis; Jean Nourrigat

, with an electric potential behaving at infinity like a power of |x|, we prove the existence of resonances and we study, when


Colloquium Mathematicum | 2010

Dynamics and Lieb-Robinson estimates for lattices of interacting anharmonic oscillators

Laurent Amour; Pierre Levy-Bruhl; Jean Nourrigat

c \rightarrow + \infty

Collaboration


Dive into the Jean Nourrigat's collaboration.

Top Co-Authors

Avatar

Laurent Amour

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar

Lisette Jager

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar

Pierre Levy-Bruhl

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Richard Lascar

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohamed Khodja

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudy Cancelier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Richard Lascar

University of Nice Sophia Antipolis

View shared research outputs
Researchain Logo
Decentralizing Knowledge