Jean Nourrigat
University of Reims Champagne-Ardenne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean Nourrigat.
Communications in Partial Differential Equations | 1982
Pierre Bolley; Jacques Camus; Jean Nourrigat
© Journées Équations aux dérivées partielles, 1981, tous droits réservés. L’accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www. math.sciences.univ-nantes.fr/edpa/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
arXiv: Analysis of PDEs | 2014
Laurent Amour; Lisette Jager; Jean Nourrigat
This work is concerned with extending the results of Calderon and Vaillancourt proving the boundedness of Weyl pseudodifferential operators Op W eyl h (F) in L 2 (R n). We state conditions under which the norm of such operators has an upper bound independent of n. To this aim, we apply a decomposition of the identity to the symbol F , thus obtaining a sum of operators of a hybrid type, each of them behaving as a Weyl operator with respect to some of the variables and as an anti-Wick operator with respect to the other ones. Then we establish upper bounds for these auxiliary operators, using suitably adapted classical methods like coherent states.
Analysis & PDE | 2013
Laurent Amour; Mohamed Khodja; Jean Nourrigat
We study the Wick symbol of a solution of the time dependent Hartree Fock equation, under weaker hypotheses than those needed for the Weyl symbol in the first paper with thesame title. With similar, we prove some kind of Ehrenfest theorem for observables that are not pseudo-differential operators.
Journal of Mathematical Physics | 2017
Laurent Amour; Richard Lascar; Jean Nourrigat
In this work, we consider fixed
Annales Henri Poincaré | 2001
Laurent Amour; R. Brummelhuis; Jean Nourrigat
1/2
Communications in Partial Differential Equations | 2005
Jean Nourrigat; Christophe Royer
spin particles interacting with the quantized radiation field in the context of quantum electrodynamics (QED). We investigate the time evolution operator in studying the reduced propagator (interaction picture). We first prove that this propagator belongs to the class of infinite dimensional Weyl pseudodifferential operators recently introduced in \cite {A-J-N} on Wiener spaces. We give a semiclassical expansion of the symbol of the reduced propagator up to any order with estimates on the remainder terms. Next, taking into account analyticity properties for the Weyl symbol of the reduced propagator, we derive estimates concerning transition probabilities between coherent states.
Journées équations aux dérivées partielles | 1988
Abderemane Mohamed; Jean Nourrigat
Abstract. For a Dirac operator in
Journées équations aux dérivées partielles | 1980
Bernard Helffer; Jean Nourrigat
{\Bbb R}^3
Journal D Analyse Mathematique | 2001
Raymond Brummelhuis; Jean Nourrigat
, with an electric potential behaving at infinity like a power of |x|, we prove the existence of resonances and we study, when
Colloquium Mathematicum | 2010
Laurent Amour; Pierre Levy-Bruhl; Jean Nourrigat
c \rightarrow + \infty