Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeen-Woo Park is active.

Publication


Featured researches published by Jeen-Woo Park.


Free Radical Biology and Medicine | 2002

Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells.

Su Min Lee; Ho-Jin Koh; Dong-Chan Park; Byoung J. Song; Tae-Lin Huh; Jeen-Woo Park

NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose 6-phosphate dehydrogenase (G6PD), malic enzyme, and the cytosolic form of NADP(+)-dependent isocitrate dehydrogenase (IDPc). Little information is available about the role of IDPc in antioxidant defense. In this study we investigated the role of IDPc against cytotoxicity induced by oxidative stress by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 3-4-fold higher and 35% lower, respectively, than that in the parental cells carrying the vector alone. Although the activities of other antioxidant enzymes, such as superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and G6PD, were comparable in all transformed cells, the ratio of GSSG to total glutathione was significantly higher in the cells expressing the lower level of IDPc. This finding indicates that IDPc is essential for the efficient glutathione recycling. Upon transient exposure to increasing concentrations of H(2)O(2) or menadione, an intracellular source of free radicals and reactive oxygen species, the cells with low levels of IDPc became more sensitive to oxidative damage by H(2)O(2) or menadione. Lipid peroxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against oxidative stress, compared to the control cells. This study provides direct evidence correlating the activities of IDPc and the maintenance of the cellular redox state, suggesting that IDPc plays an important role in cellular defense against oxidative stress.


Journal of Biological Chemistry | 2003

Inactivation of NADP+-dependent Isocitrate Dehydrogenase by Peroxynitrite IMPLICATIONS FOR CYTOTOXICITY AND ALCOHOL-INDUCED LIVER INJURY

Jin Hyup Lee; Eun Sun Yang; Jeen-Woo Park

Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and oxidative damage is one of the primary functions of NADP+-dependent isocitrate dehydrogenase (ICDH) by supplying NADPH for antioxidant systems. We investigated whether the ICDH would be a vulnerable target of peroxynitrite anion (ONOO-) as a purified enzyme, in intact cells, and in liver mitochondria from ethanol-fed rats. Synthetic peroxynitrite and 3-morpholinosydnomine N-ethylcarbamide (SIN-1), a peroxynitrite-generating compound, inactivated ICDH in a dose- and time-dependent manner. The inactivation of ICDH by peroxynitrite or SIN-1 was reversed by dithiothreitol. Loss of enzyme activity was associated with the depletion of the thiol groups in protein. Immunoblotting analysis of peroxynitrite-modified ICDH indicates that S-nitrosylation of cysteine and nitration of tyrosine residues are the predominant modifications. Using electrospray ionization mass spectrometry (ESI-MS) with tryptic digestion of protein, we found that peroxynitrite forms S-nitrosothiol adducts on Cys305 and Cys387 of ICDH. Nitration of Tyr280 was also identified, however, this modification did not significantly affect the activity of ICDH. These results indicate that S-nitrosylation of cysteine residues on ICDH is a mechanism involving the inactivation of ICDH by peroxynitrite. The structural alterations of modified enzyme were indicated by the changes in protease susceptibility and binding of the hydrophobic probe 8-anilino-1-napthalene sulfonic acid. When U937 cells were incubated with 100 μm SIN-1 bolus, a significant decrease in both cytosolic and mitochondrial ICDH activities were observed. Using immunoprecipitation and ESI-MS, we were also able to isolate and positively identify S-nitrosylated and nitrated mitochondrial ICDH from SIN-1-treated U937 cells as well as liver from ethanol-fed rats. Inactivation of ICDH resulted in the pro-oxidant state of cells reflected by an increased level of intracellular reactive oxygen species, a decrease in the ratio of [NADPH]/[NADPH + NADP+], and a decrease in the efficiency of reduced glutathione turnover. The peroxynitrite-mediated damage to ICDH may result in the perturbation of the cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition.


Biochimie | 2002

Lipid peroxidation-mediated cytotoxicity and DNA damage in U937 cells

Ji Eun Park; Joon-Hyuck Yang; Seon Joo Yoon; Jin-Hyup Lee; Eun Sun Yang; Jeen-Woo Park

Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. In the present study, we evaluated lipid peroxidation-mediated cytotoxicity and oxidative DNA damage in U937 cells. Upon exposure of U937 cells to tert-butylhydroperoxide (t-BOOH) and 2,2-azobis (2-amidinopropane) hydrochloride (AAPH), which induce lipid peroxidation in membranes, the cells exhibited a reduction in viability and an increase in the endogenous production of reactive oxygen species (ROS), as measured by the oxidation of 2,7-dichlorodihydrofluorescein. In addition, a significant decrease in the intracellular GSH level and the activities of major antioxidant enzymes were observed. We also observed lipid peroxidation-mediated oxidative DNA damage, reflected by an increase in 8-OH-dG level and loss of the ability of DNA to renature. When the cells were pretreated with the antioxidant N-acetylcysteine (NAC) or the spin trap alpha-phenyl-N-t-butylnitrone (PBN), lipid peroxidation-mediated cytotoxicity in U937 cells was protected. This effect seems to be due to the ability of NAC and PBN to reduce ROS generation induced by lipid peroxidation. These results suggest that lipid peroxidation resulted in a pro-oxidant condition of U937 cells by the depletion of GSH and inactivation of antioxidant enzymes, which consequently leads to a decrease in survival and oxidative damage to DNA. The results indicate that the peroxidation of lipid is probably one of the important intermediary events in oxidative stress-induced cellular damage.


Free Radical Biology and Medicine | 2002

Inactivation of NADP+-dependent isocitrate dehydrogenase by nitric oxide

Eun Sun Yang; Christoph Richter; Jang-Soo Chun; Tae-Lin Huh; Shin-Sung Kang; Jeen-Woo Park

Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and oxidative damage is one of the primary functions of NADP(+)-dependent isocitrate dehydrogenase (ICDH) through to supply NADPH for antioxidant systems. NO donors such as S-nitrosothiols, diethylamine NONOate, spermine NONOate, and 3-morpholinosydnomine N-ethylcarbamide (SIN-1)/superoxide dismutase inactivated ICDH in a dose- and time-dependent manner. The inhibition of ICDH by S-nitrosothiol was partially reversed by thiol, such as dithiothreitol or 2-mercaptoethanol. Loss of enzyme activity was associated with the depletion of the cysteine-reactive 5,5-dithiobis-(2-nitrobenzoate) and the loss of fluorescent probe N,N-dimethyl-N(iodoacetyl)-N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) ethyleneamine accessible thiol groups. Using electrospray ionization mass spectrometry with tryptic digestion of protein, we found that nitric oxide forms S-nitrosothiol adducts on Cys305 and Cys387. These results indicate that S-nitrosylation of cysteine residues on ICDH is a mechanism involving the inactivation of ICDH by NO. The structural alterations of modified enzyme were indicated by the changes in protease susceptibility and intrinsic tryptophan fluorescence. When U937 cells were incubated with 200 microM SNAP for 1 h, a significant decrease in both cytosolic and mitochondrial ICDH activities were observed. Furthermore, stimulation with lipopolysaccharide significantly decreased intracellular ICDH activity in RAW 264.7 cells, and this effect was blocked by NO synthase inhibitor N(omega)-methyl-L-arginine. This result indicates that ICDH was also inactivated by endogenous NO. The NO-mediated damage to ICDH may result in the perturbation of cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition.


Biochimie | 2001

Inactivation of NADP+-dependent isocitrate dehydrogenase by reactive oxygen species

Su Min Lee; Tae-Lin Huh; Jeen-Woo Park

Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and the cellular defense against oxidative damage is one of the primary functions of NADP(+)-dependent isocitrate dehydrogenase (ICDH) through supply of NADPH for antioxidant systems. When exposed to various reactive oxygen species such as hydrogen peroxide, singlet oxygen generated by photoactivated dye, superoxide anion, and hydroxyl radical produced by metal-catalyzed Fenton reactions, ICDH was susceptible to oxidative modification and damage, which was indicated by the loss of activity, fragmentation of the peptide as well as by the formation of carbonyl groups. Oxidative damage to ICDH was inhibited by antioxidant enzymes, free radical scavengers, and spin-trapping agents. The structural alterations of modified enzymes were indicated by the increase in thermal instability and binding of the hydrophobic probe 8-anilino-1-naphthalene sulfonic acid (ANSA). The reactive oxygen species-mediated damage to ICDH may result in the perturbation of cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition.


Free Radical Research | 2003

Cellular defense against singlet oxygen-induced oxidative damage by cytosolic NADP+-dependent isocitrate dehydrogenase

Sun Yee Kim; Jeen-Woo Park

Singlet oxygen ( 1 O 2 ) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. Recently, we have shown that NADP + -dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study, we investigated the role of cytosolic form of NADP + -dependent isocitrate dehydrogenase (IDPc) against singlet oxygen-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to singlet oxygen generated from photoactivated dye, the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against singlet oxygen, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against singlet oxygen-induced oxidative injury.


Biochemical and Biophysical Research Communications | 2003

Human sensitive to apoptosis gene protein inhibits peroxynitrite-induced DNA damage.

Sun Yee Kim; Jin Hyup Lee; Eun Sun Yang; In Sup Kil; Jeen-Woo Park

Sensitive to apoptosis gene (SAG) protein, a novel zinc RING finger protein, which is redox responsive and protects mammalian cells from apoptosis, is a metal chelator and a potential reactive oxygen species scavenger, but its antioxidant properties have not been completely defined. The present study was undertaken to test the hypothesis that human SAG protects from DNA damage induced by peroxynitrite, a potent physiological inorganic toxin. The present study has shown that SAG significantly inhibits single strand breaks in supercoiled plasmid DNA induced by synthesized peroxynitrite (ONOO(-)) and 3-morpholinosydnomine N-ethylcarbamide (SIN-1), a generator of peroxynitrite through the reaction between nitric oxide and superoxide anion. The formation of 8-hydroxy-2()-deoxyguanosine in calf thymus DNA by peroxynitrite and SIN-1 was also significantly inhibited by SAG. The protective effect on peroxynitrite-mediated DNA damage was completely abolished by the reaction of SAG with N-ethylmaleimide, a chemical modification agent for the sulfhydryl group of proteins. These observations suggested that the sulfhydryl group of cysteines in SAG could react directly with peroxynitrite to prevent DNA damage.


Archives of Biochemistry and Biophysics | 2003

Oxalomalate, a competitive inhibitor of NADP+-dependent isocitrate dehydrogenase, enhances lipid peroxidation-mediated oxidative damage in U937 cells

Joon-Hyuck Yang; Jeen-Woo Park

Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. Cytosolic NADP+-dependent isocitrate dehydrogenase (ICDH) in U937 cells produces NADPH, an essential reducing equivalent for the antioxidant system. The protective role of ICDH against lipid peroxidation-mediated oxidative damage in U937 cells was investigated in control cells pre-treated with oxalomalate, a competitive inhibitor of ICDH. Upon exposure to 2,2-azobis(2-amidinopropane) hydrochloride (AAPH) to U937 cells, which induces lipid peroxidation in membranes, the viability was lower and the protein oxidation, lipid peroxidation, and oxidative DNA damage, reflected by an increase in 8-hydroxy-2-deoxyguanosine, were higher in oxalomalate-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of reactive oxygen species, as measured by the oxidation of 2,7-dichlorodihydrofluorescin, as well as the significant decrease in the intracellular GSH level in oxalomalate-treated U937 cells upon exposure to AAPH. These results suggest that ICDH plays an important role as an antioxidant enzyme in cellular defense against lipid peroxidation-mediated oxidative damage through the removal of reactive oxygen species.


Free Radical Research | 2000

Ceruloplasmin enhances DNA damage induced by hydrogen peroxide in vitro

Ryung Hyo Kim; Ji Eun Park; Jeen-Woo Park

Ceruloplasmin (Cp) was found to promote the oxidative damage to DNA, as evidenced by the formation of 8-hydroxy-2′-deoxyguanosine and strand breaks, when incubated with H2O2 in vitro. The capacity of Cp to enhance oxidative damage to DNA was inhibited by hydroxyl radical scavengers such as sodium azide and mannitol, a metal chelator, diethylenetriaminepenta-acetic acid, and catalase. Although the oxidized protein resulted in an increase in the content of carbonyl groups, the ferroxidase activity and the proteolytic susceptibility were not significantly altered. The release of a portion of Cu from Cp was observed, and conformational alterations were indicated by the changes in fluorescence spectra. Based on these results, we suggest that damage to DNA is mediated in the H2O2/Cp system via the generation of ·OH by released Cu2+ and/or loosely bound Cu exposed from oxidatively damaged Cp through the conformational change. The release of Cu from Cp during oxidative stress could enhance the formation of reactive oxygen species and could also potentiate cellular damage.


Free Radical Research | 2002

Thiol-linked Peroxidase Activity of Human Sensitive to Apoptosis Gene (SAG) Protein

Sun Yee Kim; Young Seuk Bae; Jeen-Woo Park

SAG (sensitive to apoptosis gene), a novel zinc RING finger protein, which is redox responsive and protects mammalian cells from apoptosis, is a metal chelator and a potential reactive oxygen species (ROS) scavenger, but its antioxidant properties have not been completely defined. Here, we show that SAG possesses a potent peroxidase property to decompose hydrogen peroxide in the presence of dithiothreitol (DTT). However, without DTT as a reducing equivalent, SAG was not able to destroy hydrogen peroxide. The peroxidase activity was completely abolished by the reaction of SAG with N -ethylmaleimide (NEM), a chemical modification agent for the sulfhydryl of proteins. These observations suggested that the sulfhydryl of cysteines in SAG could function as strong nucleophiles to destroy hydrogen peroxide. In addition to the peroxidase activity used to remove hydrogen peroxide, SAG also showed t -butylhydroperoxide ( t -BOOH) and fatty acid hydroperoxide-selective peroxidase activity.

Collaboration


Dive into the Jeen-Woo Park's collaboration.

Top Co-Authors

Avatar

Su Min Lee

UPRRP College of Natural Sciences

View shared research outputs
Top Co-Authors

Avatar

Ho-Jin Koh

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Jin Hyup Lee

UPRRP College of Natural Sciences

View shared research outputs
Top Co-Authors

Avatar

Kwon Moo Park

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Sang Ryong Kim

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Tae-Lin Huh

UPRRP College of Natural Sciences

View shared research outputs
Top Co-Authors

Avatar

Byoung J. Song

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Christoph Richter

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge