Jenny A. Hyde
Texas A&M Health Science Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jenny A. Hyde.
Molecular Microbiology | 2009
Jenny A. Hyde; Dana K. Shaw; Roger Smith; Jerome P. Trzeciakowski; Jon T. Skare
Borrelia burgdorferi, the Lyme disease spirochete, adapts as it moves between the arthropod and mammalian hosts that it infects. We hypothesize that BosR serves as a global regulator in B. burgdorferi to modulate the oxidative stress response and adapt to mammalian hosts. To test this hypothesis, a bosR mutant in a low‐passage B. burgdorferi isolate was constructed. The resulting bosR::kanR strain was altered when grown microaerobically or anaerobically suggesting that BosR is required for optimal replication under both growth conditions. The absence of BosR increased the sensitivity of B. burgdorferi to hydrogen peroxide and reduced the synthesis of Cdr and NapA, proteins important for cellular redox balance and the oxidative stress response, respectively, suggesting an important role for BosR in borrelial oxidative homeostasis. For the bosR mutant, the production of RpoS was abrogated and resulted in the loss of OspC and DbpA, suggesting that BosR interfaces with the Rrp2–RpoN–RpoS regulatory cascade. Consistent with the linkage to RpoS, cells lacking bosR were non‐infectious in the mouse model of infection. These results indicate that BosR is required for resistance to oxidative stressors and provides a regulatory response that is necessary for B. burgdorferi pathogenesis.
Journal of Bacteriology | 2007
Jenny A. Hyde; Jerome P. Trzeciakowski; Jonathan T. Skare
The etiologic agent of Lyme disease, Borrelia burgdorferi, must adapt to the distinct environments of its arthropod vector and mammalian host during its complex life cycle. B. burgdorferi alters gene expression and protein synthesis in response to temperature, pH, and other uncharacterized environmental factors. The hypothesis tested in this study is that dissolved gases, including CO(2), serve as a signal for B. burgdorferi to alter protein production and gene expression. In this study we focused on characterization of in vitro anaerobic (5% CO(2), 3% H(2), 0.087 ppm O(2)) and microaerophilic (1% CO(2), 3.48 ppm O(2)) growth conditions and how they modulate protein synthesis and gene expression in B. burgdorferi. Higher levels of several immunoreactive proteins, including BosR, NapA, DbpA, OspC, BBK32, and RpoS, were synthesized under anaerobic conditions. Previous studies demonstrated that lower levels of NapA were produced when microaerophilic cultures were purged with nitrogen gas to displace oxygen and CO(2). In this study we identified CO(2) as a factor contributing to the observed change in NapA synthesis. Specifically, a reduction in the level of dissolved CO(2), independent of O(2) levels, resulted in reduced NapA synthesis. BosR, DbpA, OspC, and RpoS synthesis was also decreased with the displacement of CO(2). Quantitative reverse transcription-PCR indicated that the levels of the dbpA, ospC, and BBK32 transcripts are increased in the presence of CO(2), indicating that these putative borrelial virulence determinants are regulated at the transcriptional level. Thus, dissolved CO(2) may be an additional cue for borrelial host adaptation and gene regulation.
Molecular Microbiology | 2011
Jenny A. Hyde; Eric H. Weening; MiHee Chang; Jerome P. Trzeciakowski; Magnus Höök; Jeffrey D. Cirillo; Jon T. Skare
The aetiological agent of Lyme disease, Borrelia burgdorferi, is transmitted via infected Ixodes spp. ticks. Infection, if untreated, results in dissemination to multiple tissues and significant morbidity. Recent developments in bioluminescence technology allow in vivo imaging and quantification of pathogenic organisms during infection. Herein, luciferase‐expressing B. burgdorferi and strains lacking the decorin adhesins DbpA and DbpB, as well as the fibronectin adhesin BBK32, were quantified by bioluminescent imaging to further evaluate their pathogenic potential in infected mice. Quantification of bacterial load was verified by quantitative PCR (qPCR) and cultivation. B. burgdorferi lacking DbpA and DbpB were only seen at the 1 h time point post infection, consistent with its low infectivity phenotype. The bbk32 mutant exhibited a significant decrease in its infectious load at day 7 relative to its parent. This effect was most pronounced at lower inocula and imaging correlated well with qPCR data. These data suggest that BBK32‐mediated binding plays an important role in B. burgdorferi colonization. As such, in vivo imaging of bioluminescent Borrelia provides a sensitive means to detect, quantify and temporally characterize borrelial dissemination in a non‐invasive, physiologically relevant environment and, more importantly, demonstrated a quantifiable infectivity defect for the bbk32 mutant.
Molecular Microbiology | 2004
J. Seshu; Julie A. Boylan; Jenny A. Hyde; Kristen Swingle; Frank C. Gherardini; Jonathan T. Skare
Borrelia burgdorferi, the aetiologic agent of Lyme disease, modulates gene expression in response to changes imposed by its arthropod vector and mammalian hosts. As reactive oxygen species (ROS) are known to vary in these environments, we asked how B. burgdorferi responds to oxidative stress. The B. burgdorferi genome encodes a PerR homologue (recently designated BosR) that represses the oxidative stress response in other bacteria, suggesting a similar function in B. burgdorferi. When we tested the sensitivity of B. burgdorferi to ROS, one clonal non‐infectious B. burgdorferi isolate exhibited hypersensitivity to t‐butyl hydroperoxide when compared with infectious B. burgdorferi and other non‐infectious isolates. Sequence analysis indicated that the hypersensitive non‐infectious isolates bosR allele contained a single nucleotide substitution, converting an arginine to a lysine (bosRR39K). Mutants in bosRR39K exhibited an increase in resistance to oxidative stressors when compared with the parental non‐infectious strain, suggesting that BosRR39K functioned as a repressor. Complementation with bosRR39K and bosR resulted in differential sensitivity to t‐butyl hydroperoxide, indicating that these alleles are functionally distinct. In contrast to BosR, BosRR39K did not activate transcription of a napA promoter–lacZ reporter in Escherichia coli nor bind the napA promoter/operator domain. However, we found that both BosR and BosRR39K bound to the putative promoter/operator region of superoxide dismutase (sodA). In addition, we determined that cells lacking BosRR39K synthesized fourfold greater levels of the decorin binding adhesin DbpA suggesting that BosRR39K regulates genes unrelated to oxidative stress. Based on these data, we propose that the single amino acid substitution, R39K, dramatically alters the activity of BosR by altering its ability to bind DNA at target regulatory sequences.
Infection and Immunity | 2010
Jenny A. Hyde; Dana K. Shaw; Roger Smith; Jerome P. Trzeciakowski; Jon T. Skare
ABSTRACT Borrelia burgdorferi, the etiological agent of Lyme disease, adapts to unique host environments as a consequence of its complex life cycle that spans both arthropod and mammalian species. In this regard, B. burgdorferi must adapt to various environmental signals, pHs, temperatures, and O2 and CO2 levels to establish infectious foci. We hypothesize that the BosR protein functions as a global regulator that is required for both borrelial oxidative homeostasis and pathogenesis. To assess the role of BosR in B. burgdorferi, we constructed an IPTG (isopropyl-β-d-thiogalactopyranoside)-regulated bosR strain. The selective decrease of bosR resulted in a change in growth when cells were cultured either anaerobically or microaerobically; however, a distinct growth defect was observed for anaerobically grown B. burgdorferi relative to the growth attenuation observed for microaerobically grown B. burgdorferi. B. burgdorferi cells in which BosR levels were reduced were more sensitive to hydrogen peroxide and produced lower levels of NapA (Dps) and SodA, proteins involved in the oxidative stress response. In addition, the levels of OspC and DbpA were also induced coincident with increased BosR levels, suggesting that BosR interfaces with the RpoS regulatory cascade, which is known to modulate virulence gene expression in B. burgdorferi. Taken together, these results indicate that BosR is involved in the resistance of B. burgdorferi to oxidative stressors and affects the expression of genes, either directly or indirectly, whose products are important in borrelial pathogenesis.
Current protocols in microbiology | 2011
Jenny A. Hyde; Eric H. Weening; Jon T. Skare
The development of robust genetic tools to manipulate Borrelia burgdorferi, the etiologic agent of Lyme disease, now allows investigators to assess the role(s) of individual genes in the context of experimental Lyme borreliosis. This unit is devoted to the description of experimental approaches that are available for the molecular genetic analysis of B. burgdorferi with an emphasis on cultivation, electrotransformation, selection of desired mutants, and genetic complementation of acquired mutants. The intent is to provide a consensus protocol that encapsulates the methodologies currently employed by the B. burgdorferi research community and describe pertinent issues that must be accounted for when working with these pathogenic spirochetal bacteria. Curr. Protoc. Microbiol. 20:12C.4.1‐12C.4.17.
Molecular Microbiology | 2015
Hui Zhi; Eric H. Weening; Elena Magda Barbu; Jenny A. Hyde; Magnus Höök; Jon T. Skare
Borrelia burgdorferi, the etiologic agent of Lyme disease, adapts to the mammalian hosts by differentially expressing several genes in the BosR and Rrp2‐RpoN‐RpoS dependent pathways, resulting in a distinct protein profile relative to that seen for survival in the Ixodes spp. tick. Previous studies indicate that a putative lipoprotein, BBA33, is produced in an RpoS‐dependent manner under conditions that mimic the mammalian component of the borrelial lifecycle. However, the significance and function for BBA33 is not known. Given its linkage to the BosR/Rrp2‐RpoN‐RpoS regulatory cascade, we hypothesized that BBA33 facilitates B. burgdorferi infection in the mammalian host. The deletion of bba33 eliminated B. burgdorferi infectivity in C3H mice, which was rescued by genetic complementation with intact bba33. With regard to function, a combinatorial peptide approach, coupled with subsequent in vitro binding assays, indicated that BBA33 binds to collagen type VI and, to a lesser extent, collagen type IV. Whole cell binding assays demonstrated BBA33‐dependent binding to human collagen type VI. Taken together, these results suggest that BBA33 interacts with collagenous structures and may function as an adhesin in a process that is required to prevent bacterial clearance.
Molecular Microbiology | 2012
Dana K. Shaw; Jenny A. Hyde; Jon T. Skare
The etiological agent of Lyme disease, Borrelia burgdorferi, is transmitted by ticks of the Ixodes genus and, if untreated, can cause significant morbidity in affected individuals. Recent reports have shown that polyunsaturated fatty acids in the B. burgdorferi cell envelope are potential targets for oxidative damage, which can be lethal. How B. burgdorferi responds to this assault is not known. Herein we report evidence that bb0646 codes for a lipase that is located within the bosR operon and that has specificity for both saturated and polyunsaturated fatty acids. Specifically, strains harbouring mutated copies of the lipase, either in the form of an insertionally inactivated construct or site‐directed mutations within the active site, demonstrated attenuated lipolytic and haemolytic phenotypes when compared with the isogenic parent and trans‐complements. In vivo analysis showed that while the bb0646 mutant remains infectious, the spirochaetal load is significantly lower than both the isogenic parent and the complemented mutant strains. Taken together, these data demonstrate that BB0646 is a broad substrate specific lipase that contributes to lipolytic and haemolytic activity in vitro and is required for optimal B. burgdorferi infection.
Frontiers in Immunology | 2017
Jenny A. Hyde
Borrelia burgdorferi is the etiological agent of Lyme disease, a multisystemic, multistage, inflammatory infection resulting in patients experiencing cardiac, neurological, and arthritic complications when not treated with antibiotics shortly after exposure. The spirochetal bacterium transmits through the Ixodes vector colonizing the dermis of a mammalian host prior to hematogenous dissemination and invasion of distal tissues all the while combating the immune response as it traverses through its pathogenic lifecycle. The innate immune response controls the borrelial burden in the dermis, but is unable to clear the infection and thereby prevent progression of disease. Dissemination in the mammalian host requires temporal regulation of virulence determinants to allow for vascular interactions, invasion, and colonization of distal tissues. Virulence determinants and/or adhesins are highly heterogenetic among environmental B. burgdorferi strains with particular genotypes being associated with the ability to disseminate to specific tissues and the severity of disease, but fail to generate cross-protective immunity between borrelial strains. The unique motility of B. burgdorferi rendered by the endoflagella serves a vital function for dissemination and protection from immune recognition. Progress has been made toward understanding the chemotactic regulation coordinating the activity of the two polar localized flagellar motors and their role in borrelial virulence, but this regulation is not yet fully understood. Distinct states of motility allow for dynamic interactions between several B. burgdorferi adhesins and host targets that play roles in transendothelial migration. Transmigration across endothelial and blood–brain barriers allows for the invasion of tissues and elicits localized immune responses. The invasive nature of B. burgdorferi is lacking in proactive mechanisms to modulate disease, such as secretion systems and toxins, but recent work has shown degradation of host extracellular matrices by B. burgdorferi contributes to the invasive capabilities of the pathogen. Additionally, B. burgdorferi may use invasion of eukaryotic cells for immune evasion and protection against environmental stresses. This review provides an overview of B. burgdorferi mechanisms for dissemination and invasion in the mammalian host, which are essential for pathogenesis and the development of persistent infection.
PLOS ONE | 2016
Jonathan T. Skare; Dana K. Shaw; Jerome P. Trzeciakowski; Jenny A. Hyde
Borrelia burgdorferi is a spirochetal bacterium transmitted by the Ixodes tick that causes Lyme disease in humans due to its ability to evade the host immune response and disseminate to multiple immunoprotective tissues. The pathogen undergoes dynamic genetic alterations important for adaptation from the tick vector to the mammalian host, but little is known regarding the changes at the transcriptional level within the distal tissues they colonize. In this study, B. burgdorferi infection and gene expression of the essential virulence determinant ospC was quantitatively monitored in a spatial and temporal manner utilizing reporter bioluminescent borrelial strains with in vivo and ex vivo imaging. Although expressed from a shuttle vector, the PospC-luc construct exhibited a similar expression pattern relative to native ospC. Bacterial burden in skin, inguinal lymph node, heart, bladder and tibiotarsal joint varied between tissues and fluctuated over the course of infection possibly in response to unique cues of each microenvironment. Expression of ospC, when normalized for changes in bacterial load, presented unique profiles in murine tissues at different time points. The inguinal lymph node was infected with a significant B. burgdorferi burden, but showed minimal ospC expression. B. burgdorferi infected skin and heart induced expression of ospC early during infection while the bladder and tibiotarsal joint continued to display PospC driven luminescence throughout the 21 day time course. Localized skin borrelial burden increased dramatically in the first 96 hours following inoculation, which was not paralleled with an increase in ospC expression, despite the requirement of ospC for dermal colonization. Quantitation of bioluminescence representing ospC expression in individual tissues was validated by qRT-PCR of the native ospC transcript. Taken together, the temporal regulation of ospC expression in distal tissues suggests a role for this virulence determinant beyond early infection.