Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan T. Skare is active.

Publication


Featured researches published by Jonathan T. Skare.


Infection and Immunity | 2001

Decreased infectivity in Borrelia burgdorferi strain B31 is associated with loss of linear plasmid 25 or 28-1.

Maria Labandeira-Rey; Jonathan T. Skare

ABSTRACT Previous reports indicated a correlation between loss of plasmids and decreased infectivity of Borrelia burgdorferi strain B31, suggesting that plasmids may encode proteins that are required for pathogenesis. In this study, we expand on this correlation. Using theB. burgdorferi genomic sequence, we designed primers specific for each plasmid, and by using PCR we catalogued 11 linear and 2 circular plasmids from 49 clonal isolates of a mid-passage B. burgdorferi strain B31, initially derived from infected mouse skin, and 20 clones obtained from mouse skin infected with a low-passage isolate of B. burgdorferi strain B31. Among the 69 clones analyzed, nine distinct genotypes were identified relative to wild-type B. burgdorferi strain B31. Among the nine clonal genotypes obtained, only the 9-kb circular plasmid (cp9), the 25-kb linear plasmid (lp25), and either the 28-kb linear plasmid 1 or 4 (lp28-1 and lp28-4, respectively) were missing, in different combinations. We compared the infectivity of the wild-type strain, containing all known B. burgdorferi plasmids, with those of single mutants lacking either lp28-1, lp28-4, or lp25 and a double mutant missing both cp9 and lp28-1. The infectivity data indicated thatB. burgdorferi strain B31 cells lacking lp28-4 were modestly attenuated in all tissues analyzed, whereas samples missing lp25 were completely attenuated in all tissues, even at the highest inoculum tested. Isolates without lp28-1 infected the joint tissue yet were not able to infect other tissues as effectively. In addition, we have observed a selection in vivo in the skin, bladder, and joint for cells containing lp25 and in the skin and bladder for cells containing lp28-1, indicating that lp25 and lp28-1 encode proteins required for colonization and short-term maintenance in these mammalian tissues. In contrast, there was no selection in the joint for cells containing lp28-1, suggesting that genes on lp28-1 are not required for colonization of B. burgdorferi within the joint. These observations imply that the dynamic nature of the B. burgdorferi genome may provide the genetic heterogeneity necessary for survival in the diverse milieus that this pathogen occupies in nature and may contribute to tropism in certain mammalian host tissues.


Molecular Microbiology | 2006

Inactivation of the fibronectin‐binding adhesin gene bbk32 significantly attenuates the infectivity potential of Borrelia burgdorferi

J. Seshu; M. Dolores Esteve-Gassent; Maria Labandeira-Rey; Jung Hwa Kim; Jerome P. Trzeciakowski; Magnus Höök; Jonathan T. Skare

Borrelia burgdorferi, the aetiological agent of Lyme disease, utilizes multiple adhesins to interact with both the arthropod vector and mammalian hosts it colonizes. One such adhesive molecule is a surface‐exposed fibronectin‐binding lipoprotein, designated BBK32. Previous characterization of BBK32‐mediated fibronectin binding has been limited to biochemical analyses due to the difficulty in mutagenizing infectious isolates of B. burgdorferi. Here we report an alternative method to inactivate bbk32 via allelic exchange through use of a low‐passage variant of B. burgdorferi strain B31 that is more readily transformed. The resulting mutant does not synthesize BBK32, exhibits reduced fibronectin binding in solid phase assays and manifests decreased interactions with mouse fibroblast cells relative to both the infectious parent and genetic complement. Furthermore, the bbk32 knockout was significantly attenuated in the murine model of Lyme disease, whereas a genetically complemented control was not, indicating that BBK32 is necessary for maximal B. burgdorferi infection in the mouse. To our knowledge this is the first mutational analysis of a surface exposed, functional borrelial lipoprotein adhesin whose activity is associated with the mammalian host environment. By analogy with other pathogens that utilize fibronectin binding as an important virulence determinant, the borrelial fibronectin–BBK32 interaction is likely to be important in B. burgdorferi‐specific pathogenic mechanisms, particularly in the context of dissemination, secondary colonization and/or persistence.


Infection and Immunity | 2003

The absence of linear plasmid 25 or 28-1 of Borrelia burgdorferi dramatically alters the kinetics of experimental infection via distinct mechanisms.

Maria Labandeira-Rey; J. Seshu; Jonathan T. Skare

ABSTRACT The 25-kb linear plasmid lp25 and one of the 28-kb linear plasmids (lp28-1) are required for experimental infection in Borrelia burgdorferi, the etiologic agent of Lyme disease. The loss of these plasmids either eliminates infectivity (lp25) or significantly increases the 50% infective dose during a 2-week infection period (lp28-1). This study assessed the kinetics of bacterial dissemination in C3H/HeN mice infected with B. burgdorferi lacking either lp25 or lp28-1, as well as their wild-type parent, and tracked the development of specific borrelial antibodies over a 3-week period. The results indicated that the wild type and the lp28-1− strains were able to disseminate throughout the host, whereas the lp25− strain was cleared within 48 h of inoculation. While the wild-type B. burgdorferi persisted in tissues for the duration of the study, the lp28-1− mutant began clearing at day 8, with no detectable bacteria present by day 18. As expected, the wild-type strain persisted in C3H/HeN mice despite a strong humoral response; however, the lp28-1− mutant was cleared coincidently with the development of a modest immunoglobulin M response. The lp28-1− mutant was able to disseminate and persist in C3H-scid mice at a level indistinguishable from that of wild-type cells, confirming that acquired immunity was required for clearance in C3H/HeN mice. Thus, within an immunocompetent host, lp28-1-encoded proteins are not required for dissemination but are essential for persistence associated with Lyme borreliosis.


Journal of Clinical Investigation | 1995

Virulent strain associated outer membrane proteins of Borrelia burgdorferi.

Jonathan T. Skare; Ellen S. Shang; Denise M. Foley; David R. Blanco; Cheryl I. Champion; Tajib A. Mirzabekov; Y. Sokolov; Bruce L. Kagan; James N. Miller; Michael A. Lovett

We have isolated and purified outer membrane vesicles (OMV) from Borrelia burgdorferi strain B31 based on methods developed for isolation of Treponema pallidum OMV. Purified OMV exhibited distinct porin activities with conductances of 0.6 and 12.6 nano-Siemen and had no detectable beta-NADH oxidase activity indicating their outer membrane origin and their lack of inner membrane contamination, respectively. Hydrophobic proteins were identified by phase partitioning with Triton X-114. Most of these hydrophobic membrane proteins were not acylated, suggesting that they are outer membrane-spanning proteins. Identification of palmitate-labeled lipoproteins revealed that several were enriched in the OMV, several were enriched in the protoplasmic cylinder inner membrane fraction, and others were found exclusively associated with the inner membrane. The protein composition of OMV changed significantly with successive in vitro cultivation of strain B31. Using antiserum with specificity for virulent strain B31, we identified OMV antigens on the surface of the spirochete and identified proteins whose presence in OMV could be correlated with virulence and protective immunity in the rabbit Lyme disease model. These virulent strain associated outer membrane-spanning proteins may provide new insight into the pathogenesis of Lyme disease.


Infection and Immunity | 2008

Borrelia burgdorferi Lacking DbpBA Exhibits an Early Survival Defect during Experimental Infection

Eric H. Weening; Nikhat Parveen; Jerome P. Trzeciakowski; John M. Leong; Magnus Höök; Jonathan T. Skare

ABSTRACT Several Borrelia burgdorferi genes induced under mammalian host conditions have been purported to be important in Lyme disease pathogenesis based on their binding to host structures. These genes include the dbpBA locus, whose products bind host decorin and glycosoaminoglycans. Recently, the dbpBA genes were reported to be involved in borrelial infectivity. Here we extended the previous observations by using culture and quantitative PCR to evaluate low- and high-dose murine infection by a ΔdbpBA::Gentr derivative of B. burgdorferi strain B31. The results indicate that the ΔdbpBA::Gentr mutant is attenuated in the ability to initially colonize and then persist in multiple tissues. The mutant exhibited a colonization defect as early as 3 days postinfection, before the development of an adaptive immune response, and after low-dose infection of SCID mice, which are deficient in adaptive immunity. These findings suggest that the inability to adhere to host decorin may promote clearance of B. burgdorferi, presumably via innate immune mechanisms. In a high-dose infection, the mutant disseminated to several tissues, particularly joint tissue, but it was generally cleared from these tissues by 3 weeks postinfection. Finally, following high-dose infection of SCID mice, the dbpBA mutant exhibited only a mild colonization defect, suggesting that the adaptive response is involved in the clearance of the mutant in immunocompetent mice. Taken together, these results suggest that the DbpBA proteins facilitate the colonization of multiple tissues by B. burgdorferi and are required for optimal resistance to both innate and adaptive immune mechanisms following needle inoculation.


Molecular Microbiology | 1991

Evidence for a TonB-dependent energy transduction complex in Escherichia coli

Jonathan T. Skare; Kathleen Postle

Escherichia coli TonB protein is required for the active transport of vitamin B12 and Fe(III)‐siderophore complexes across the outer membrane, infection by bacteriophages T1 and φ80, and sensitivity to B‐group colicins. TonB appears to function as an energy transducer in these processes, coupling cytoplasmic membrane electrochemical potential to receptors in the outer membrane. Previous reports have demonstrated that chromosomally encoded TonB is functionally unstable in the absence of protein synthesis (half‐life ∼15–30 minutes) and have shown that plasmid‐encoded, overexpressed TonB is chemically unstable (half‐life ∼5 minutes). In contrast, this study has shown that chromosomally encoded TonB was chemically stable for greater than 90 minutes while maintaining its functional instability. These data suggest that proteolytic degradation of TonB protein is not the basis of its functional instability. Auxiliary proteins such as ExbB also play a role in TonB‐dependent energy transduction. In this study, we have shown that the chemical half‐life of chromosomally encoded TonB in an exbB::Tn10 mutant was reduced at least 18‐fold, suggesting that TonB is a part of a cytoplasmic membrane complex that includes, at the minimum, ExbB. These results also suggest that the chemical instability of plasmid‐encoded TonB resulted when the TonB ExbB ratio was too high and are consistent with previous observations that plasmid‐encoded ExbB can stabilize plasmid‐encoded TonB. The exbB mutation also resulted in a significant decrease in TonB function as measured by the ability of cells to adsorb bacterio‐phage Φ80. In a previous study, strains carrying a tolQ nonsense mutation in combination with an exbB mutation were observed to mimic a tonB phenotype, suggesting that either ExbB or TolQ can alternatively activate TonB. In contrast, we have shown that neither the chemical half‐life nor the function of TonB are affected by the tolQ mutation, and thus, unlike ExbB, TolQ plays a minimal role in TonB‐dependent processes.


Journal of Bacteriology | 2007

Borrelia burgdorferi Alters Its Gene Expression and Antigenic Profile in Response to CO2 Levels

Jenny A. Hyde; Jerome P. Trzeciakowski; Jonathan T. Skare

The etiologic agent of Lyme disease, Borrelia burgdorferi, must adapt to the distinct environments of its arthropod vector and mammalian host during its complex life cycle. B. burgdorferi alters gene expression and protein synthesis in response to temperature, pH, and other uncharacterized environmental factors. The hypothesis tested in this study is that dissolved gases, including CO(2), serve as a signal for B. burgdorferi to alter protein production and gene expression. In this study we focused on characterization of in vitro anaerobic (5% CO(2), 3% H(2), 0.087 ppm O(2)) and microaerophilic (1% CO(2), 3.48 ppm O(2)) growth conditions and how they modulate protein synthesis and gene expression in B. burgdorferi. Higher levels of several immunoreactive proteins, including BosR, NapA, DbpA, OspC, BBK32, and RpoS, were synthesized under anaerobic conditions. Previous studies demonstrated that lower levels of NapA were produced when microaerophilic cultures were purged with nitrogen gas to displace oxygen and CO(2). In this study we identified CO(2) as a factor contributing to the observed change in NapA synthesis. Specifically, a reduction in the level of dissolved CO(2), independent of O(2) levels, resulted in reduced NapA synthesis. BosR, DbpA, OspC, and RpoS synthesis was also decreased with the displacement of CO(2). Quantitative reverse transcription-PCR indicated that the levels of the dbpA, ospC, and BBK32 transcripts are increased in the presence of CO(2), indicating that these putative borrelial virulence determinants are regulated at the transcriptional level. Thus, dissolved CO(2) may be an additional cue for borrelial host adaptation and gene regulation.


Infection and Immunity | 2004

Dissolved Oxygen Levels Alter Gene Expression and Antigen Profiles in Borrelia burgdorferi

J. Seshu; Julie A. Boylan; Frank C. Gherardini; Jonathan T. Skare

ABSTRACT The Lyme disease spirochete, Borrelia burgdorferi, encounters many environmental signals as it cycles between the arthropod vector and mammalian hosts, including temperature, pH, and other host factors. To test the possibility that dissolved oxygen modulates gene expression in B. burgdorferi, spirochetes were exposed to differential levels of dissolved oxygen, and distinct alterations were observed at both the transcriptional and translational levels. Specifically NapA, a Dps/Dpr homologue involved in the oxidative stress response in other bacteria, was reduced when B. burgdorferi was grown under oxygen-limiting conditions. In contrast, several immunoreactive proteins were altered when tested with infection-derived sera from different hosts. Specifically, OspC, DbpA, and VlsE were synthesized at greater levels when cells were grown in limiting oxygen, whereas VraA was reduced. The levels of oxygen in the medium did not affect OspA production. Real-time reverse transcription-PCR analysis of RNA isolated from infectious isolates of strains B31 and cN40 indicated that the expression of ospC, dbpA, and vlsE increased while napA expression decreased under dissolved-oxygen-limiting conditions, whereas flaB was not affected. The reverse transcription-PCR results corroborated the immunoblot analyses and indicated that the increase in OspC, DbpA, and VlsE was due to regulation at the transcriptional level of the genes encoding these antigens. These results indicate that dissolved oxygen modulates gene expression in B. burgdorferi and imply that the redox environment may be an additional regulatory cue that spirochetes exploit to adapt to the disparate niches that they occupy in nature.


Molecular Microbiology | 2004

A conservative amino acid change alters the function of BosR, the redox regulator of Borrelia burgdorferi

J. Seshu; Julie A. Boylan; Jenny A. Hyde; Kristen Swingle; Frank C. Gherardini; Jonathan T. Skare

Borrelia burgdorferi, the aetiologic agent of Lyme disease, modulates gene expression in response to changes imposed by its arthropod vector and mammalian hosts. As reactive oxygen species (ROS) are known to vary in these environments, we asked how B. burgdorferi responds to oxidative stress. The B. burgdorferi genome encodes a PerR homologue (recently designated BosR) that represses the oxidative stress response in other bacteria, suggesting a similar function in B. burgdorferi. When we tested the sensitivity of B. burgdorferi to ROS, one clonal non‐infectious B. burgdorferi isolate exhibited hypersensitivity to t‐butyl hydroperoxide when compared with infectious B. burgdorferi and other non‐infectious isolates. Sequence analysis indicated that the hypersensitive non‐infectious isolates bosR allele contained a single nucleotide substitution, converting an arginine to a lysine (bosRR39K). Mutants in bosRR39K exhibited an increase in resistance to oxidative stressors when compared with the parental non‐infectious strain, suggesting that BosRR39K functioned as a repressor. Complementation with bosRR39K and bosR resulted in differential sensitivity to t‐butyl hydroperoxide, indicating that these alleles are functionally distinct. In contrast to BosR, BosRR39K did not activate transcription of a napA promoter–lacZ reporter in Escherichia coli nor bind the napA promoter/operator domain. However, we found that both BosR and BosRR39K bound to the putative promoter/operator region of superoxide dismutase (sodA). In addition, we determined that cells lacking BosRR39K  synthesized  fourfold  greater  levels  of the decorin binding adhesin DbpA suggesting that BosRR39K regulates genes unrelated to oxidative stress. Based on these data, we propose that the single amino acid substitution, R39K, dramatically alters the activity of BosR by altering its ability to bind DNA at target regulatory sequences.


PLOS ONE | 2009

A Novel Fibronectin Binding Motif in MSCRAMMs Targets F3 Modules

Sabitha Prabhakaran; Xiaowen Liang; Jonathan T. Skare; Jennifer R. Potts; Magnus Höök

Background BBK32 is a surface expressed lipoprotein and fibronectin (Fn)-binding microbial surface component recognizing adhesive matrix molecule (MSCRAMM) of Borrelia burgdorferi, the causative agent of Lyme disease. Previous studies from our group showed that BBK32 is a virulence factor in experimental Lyme disease and located the Fn-binding region to residues 21–205 of the lipoprotein. Methodology/Principal Findings Studies aimed at identifying interacting sites between BBK32 and Fn revealed an interaction between the MSCRAMM and the Fn F3 modules. Further analysis of this interaction showed that BBK32 can cause the aggregation of human plasma Fn in a similar concentration-dependent manner to that of anastellin, the superfibronectin (sFn) inducing agent. The resulting Fn aggregates are conformationally distinct from plasma Fn as indicated by a change in available thermolysin cleavage sites. Recombinant BBK32 and anastellin affect the structure of Fn matrices formed by cultured fibroblasts and inhibit endothelial cell proliferation similarly. Within BBK32, we have located the sFn-forming activity to a region between residues 160 and 175 which contains two sequence motifs that are also found in anastellin. Synthetic peptides mimicking these motifs induce Fn aggregation, whereas a peptide with a scrambled sequence motif was inactive, suggesting that these motifs represent the sFn-inducing sequence. Conclusions/Significance We conclude that BBK32 induces the formation of Fn aggregates that are indistinguishable from those formed by anastellin. The results of this study provide evidence for how bacteria can target host proteins to manipulate host cell activities.

Collaboration


Dive into the Jonathan T. Skare's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ellen S. Shang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathleen Postle

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Bruce L. Kagan

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge