Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jens Wiltfang is active.

Publication


Featured researches published by Jens Wiltfang.


Nature Genetics | 2009

Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease.

Denise Harold; Richard Abraham; Paul Hollingworth; Rebecca Sims; Amy Gerrish; Marian Lindsay Hamshere; Jaspreet Singh Pahwa; Valentina Moskvina; Kimberley Dowzell; Amy Williams; Nicola L. Jones; Charlene Thomas; Alexandra Stretton; Angharad R. Morgan; Simon Lovestone; John Powell; Petroula Proitsi; Michelle K. Lupton; Carol Brayne; David C. Rubinsztein; Michael Gill; Brian A. Lawlor; Aoibhinn Lynch; Kevin Morgan; Kristelle Brown; Peter Passmore; David Craig; Bernadette McGuinness; Stephen Todd; Clive Holmes

We undertook a two-stage genome-wide association study (GWAS) of Alzheimers disease (AD) involving over 16,000 individuals, the most powerful AD GWAS to date. In stage 1 (3,941 cases and 7,848 controls), we replicated the established association with the apolipoprotein E (APOE) locus (most significant SNP, rs2075650, P = 1.8 × 10−157) and observed genome-wide significant association with SNPs at two loci not previously associated with the disease: at the CLU (also known as APOJ) gene (rs11136000, P = 1.4 × 10−9) and 5′ to the PICALM gene (rs3851179, P = 1.9 × 10−8). These associations were replicated in stage 2 (2,023 cases and 2,340 controls), producing compelling evidence for association with Alzheimers disease in the combined dataset (rs11136000, P = 8.5 × 10−10, odds ratio = 0.86; rs3851179, P = 1.3 × 10−9, odds ratio = 0.86).


Archive | 2009

Letter abstract - Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's Disease

Denise Harold; Richard Abraham; Paul Hollingworth; Rebecca Sims; Amy Gerrish; Marian Lindsay Hamshere; Jaspreet Sing Pahwa; Valentina Moskvina; Kimberley Dowzell; Amy Williams; Nicola L. Jones; Charlene Thomas; Alexandra Stretton; Angharad R. Morgan; Simon Lovestone; John Powell; Petroula Proitsi; Michelle K. Lupton; Carol Brayne; David C. Rubinsztein; Michael Gill; Brian A. Lawlor; Aoibhinn Lynch; Kevin Morgan; Kristelle Brown; Peter Passmore; David Craig; Bernadette McGuinness; Stephen Todd; Clive Holmes

We undertook a two-stage genome-wide association study (GWAS) of Alzheimers disease (AD) involving over 16,000 individuals, the most powerful AD GWAS to date. In stage 1 (3,941 cases and 7,848 controls), we replicated the established association with the apolipoprotein E (APOE) locus (most significant SNP, rs2075650, P = 1.8 × 10−157) and observed genome-wide significant association with SNPs at two loci not previously associated with the disease: at the CLU (also known as APOJ) gene (rs11136000, P = 1.4 × 10−9) and 5′ to the PICALM gene (rs3851179, P = 1.9 × 10−8). These associations were replicated in stage 2 (2,023 cases and 2,340 controls), producing compelling evidence for association with Alzheimers disease in the combined dataset (rs11136000, P = 8.5 × 10−10, odds ratio = 0.86; rs3851179, P = 1.3 × 10−9, odds ratio = 0.86).


PLOS ONE | 2010

Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer's disease.

Lesley Jones; Peter Holmans; Marian Lindsay Hamshere; Denise Harold; Valentina Moskvina; Dobril Ivanov; Andrew Pocklington; Richard Abraham; Paul Hollingworth; Rebecca Sims; Amy Gerrish; Jaspreet Singh Pahwa; Nicola L. Jones; Alexandra Stretton; Angharad R. Morgan; Simon Lovestone; John Powell; Petroula Proitsi; Michelle K. Lupton; Carol Brayne; David C. Rubinsztein; Michael Gill; Brian A. Lawlor; Aoibhinn Lynch; Kevin Morgan; Kristelle Brown; Peter Passmore; David Craig; Bernadette McGuinness; Stephen Todd

Background Late Onset Alzheimers disease (LOAD) is the leading cause of dementia. Recent large genome-wide association studies (GWAS) identified the first strongly supported LOAD susceptibility genes since the discovery of the involvement of APOE in the early 1990s. We have now exploited these GWAS datasets to uncover key LOAD pathophysiological processes. Methodology We applied a recently developed tool for mining GWAS data for biologically meaningful information to a LOAD GWAS dataset. The principal findings were then tested in an independent GWAS dataset. Principal Findings We found a significant overrepresentation of association signals in pathways related to cholesterol metabolism and the immune response in both of the two largest genome-wide association studies for LOAD. Significance Processes related to cholesterol metabolism and the innate immune response have previously been implicated by pathological and epidemiological studies of Alzheimers disease, but it has been unclear whether those findings reflected primary aetiological events or consequences of the disease process. Our independent evidence from two large studies now demonstrates that these processes are aetiologically relevant, and suggests that they may be suitable targets for novel and existing therapeutic approaches.


The EMBO Journal | 2012

The mechanism of γ-Secretase dysfunction in familial Alzheimer disease.

Lucía Chávez-Gutiérrez; Leen Bammens; Iryna Benilova; A. Vandersteen; Manasi Benurwar; Marianne Borgers; Sam Lismont; Lujia Zhou; Simon Van Cleynenbreugel; Hermann Esselmann; Jens Wiltfang; Lutgarde Serneels; Eric Karran; Joost Schymkowitz; Frederic Rousseau; Kerensa Broersen; Bart De Strooper

The mechanisms by which mutations in the presenilins (PSEN) or the amyloid precursor protein (APP) genes cause familial Alzheimer disease (FAD) are controversial. FAD mutations increase the release of amyloid β (Aβ)42 relative to Aβ40 by an unknown, possibly gain‐of‐toxic‐function, mechanism. However, many PSEN mutations paradoxically impair γ‐secretase and ‘loss‐of‐function’ mechanisms have also been postulated. Here, we use kinetic studies to demonstrate that FAD mutations affect Aβ generation via three different mechanisms, resulting in qualitative changes in the Aβ profiles, which are not limited to Aβ42. Loss of ε‐cleavage function is not generally observed among FAD mutants. On the other hand, γ‐secretase inhibitors used in the clinic appear to block the initial ε‐cleavage step, but unexpectedly affect more selectively Notch than APP processing, while modulators act as activators of the carboxypeptidase‐like (γ) activity. Overall, we provide a coherent explanation for the effect of different FAD mutations, demonstrating the importance of qualitative rather than quantitative changes in the Aβ products, and suggest fundamental improvements for current drug development efforts.


Annals of Neurology | 2001

Large-scale, multicenter study of cerebrospinal fluid tau protein phosphorylated at serine 199 for the antemortem diagnosis of Alzheimer's disease

Nobuo Itoh; Hiroyuki Arai; Katsuya Urakami; Koichi Ishiguro; Hideto Ohno; Harald Hampel; Katharina Buerger; Jens Wiltfang; Markus Otto; Hans A. Kretzschmar; Hans-Juergen Moeller; Masaki Imagawa; Hideki Kohno; Kenji Nakashima; Shigeki Kuzuhara; Hidetada Sasaki; Kazutomo Imahori

We surveyed a total of 570 cerebrospinal fluid (CSF) samples from a variety of diseases, including Alzheimers disease (AD; n = 236), non‐AD‐demented and nondemented diseases (n = 239), and normal controls (n = 95) to quantitate levels of tau protein phosphorylated at serine 199 (CSF/phospho‐tau199) by a recently established sandwich ELISA. The CSF/phospho‐tau199 levels in the AD group were significantly elevated compared to those in all the other non‐AD groups. Receiver operating characteristics curves showed that the diagnostic sensitivity and specificity for the AD group versus all the other non‐AD groups using the CSF/phospho‐tau199 were 85.2% and 85.0%, respectively. Furthermore, there was a significant positive correlation between CSF/phospho‐tau199 and CSF/total‐tau levels in the AD group. Elevated CSF/phospho‐tau199 in the AD group was noted irrespective of age, gender, dementia severity, and number of apolipoprotein E4 alleles. Thus, we suggest that CSF/phospho‐tau199 may be a novel and logical biomarker in supporting antemortem diagnosis of AD.


Science | 2009

γ-secretase heterogeneity in the Aph1 subunit: relevance for Alzheimer’s Disease

Lutgarde Serneels; Jérôme Van Biervliet; Katleen Craessaerts; Tim Dejaegere; Katrien Horré; Tine Van Houtvin; Hermann Esselmann; Sabine Paul; Martin K. Schäfer; Oksana Berezovska; Bradley T. Hyman; Ben Sprangers; Raf Sciot; Lieve Moons; Mathias Jucker; Zhixiang Yang; Patrick C. May; Eric Karran; Jens Wiltfang; Rudi D’Hooge; Bart De Strooper

Tactical Target Intramembrane proteolysis by the γ-secretase complex is important during development and in the pathology of Alzheimers disease. γ-Secretase has usually been considered as a homogeneous activity. Serneels et al. (p. 639, published online 19 March; see the Perspective by Golde and Kukar) now show that the Aph1B component of the γ-secretase complex is responsible for the generation of long β-amyloid species involved in Alzheimers disease. In a mouse model of Alzheimers disease, full knockout of Aph1B improved disease phenotypes, without the sort of toxicity previously observed when targeting γ-secretase more generally. Targeted knockout of only part of the γ-secretase complex lessens toxicity and still improves disease phenotypes. The γ-secretase complex plays a role in Alzheimer’s disease and cancer progression. The development of clinically useful inhibitors, however, is complicated by the role of the γ-secretase complex in regulated intramembrane proteolysis of Notch and other essential proteins. Different γ-secretase complexes containing different Presenilin or Aph1 protein subunits are present in various tissues. Here we show that these complexes have heterogeneous biochemical and physiological properties. Specific inactivation of the Aph1B γ-secretase in a mouse Alzheimer’s disease model led to improvements of Alzheimer’s disease–relevant phenotypic features without any Notch-related side effects. The Aph1B complex contributes to total γ-secretase activity in the human brain, and thus specific targeting of Aph1B-containing γ-secretase complexes may help generate less toxic therapies for Alzheimer’s disease.


Brain | 2006

CSF amyloid-β-peptides in Alzheimer's disease, dementia with Lewy bodies and Parkinson's disease dementia

Mirko Bibl; Brit Mollenhauer; Hermann Esselmann; Piotr Lewczuk; Hans-Wolfgang Klafki; Katrin Sparbier; Alexandr Smirnov; Lukas Cepek; Claudia Trenkwalder; Eckart Rüther; Johannes Kornhuber; Markus Otto; Jens Wiltfang

Abstract As the differential diagnosis of dementias based on established clinical criteria is often difficult, biomarkers for applicable diagnostic testing are currently under intensive investigation. Amyloid plaques deposited in the brain of patients suffering from Alzheimers disease, dementia with Lewy bodies (DLB) and Parkinsons disease dementia (PDD) mainly consist of carboxy-terminally elongated forms of amyloid-beta (Aβ) peptides, such as Aβ1–42. Absolute Aβ1–42 levels in CSF have shown diagnostic value for the diagnosis of Alzheimers disease, but the discrimination among Alzheimers disease, DLB and PDD was poor. A recently established quantitative urea-based Aβ-sodium-dodecylsulphate–polyacrylamide-gel-electrophoresis with Western immunoblot (Aβ-SDS–PAGE/immunoblot) revealed a highly conserved Aβ peptide pattern of the carboxy-terminally truncated Aβ peptides 1–37, 1–38, 1–39 in addition to 1–40 and 1–42 in human CSF. We used the Aβ-SDS–PAGE/immunoblot to investigate the CSF of 23 patients with Alzheimers disease, 21 with DLB, 21 with PDD and 23 non-demented disease controls (NDC) for disease-specific alterations of the Aβ peptide patterns in its absolute and relative quantities. The diagnostic groups were matched for age and severity of dementia. The present study is the first attempt to evaluate the meaning of Aβ peptide patterns in CSF for differential diagnosis of the three neurodegenerative diseases—Alzheimers disease, DLB and PDD. The Aβ peptide patterns displayed disease-specific variations and the ratio of the differentially altered Aβ1–42 to the Aβ1–37 levels subsequently discriminated all diagnostic groups from each other at a highly significant level, except DLB from PDD. Additionally, a novel peptide with Aβ-like immunoreactivity was observed constantly in the CSF of all 88 investigated patients. The pronounced percentage increase of this peptide in DLB allowed a highly significant discrimination from PDD. Using a cut-off point of 0.954%, this marker yielded a diagnostic sensitivity and specificity of 81 and 71%, respectively. From several lines of indication, we consider this peptide to represent an oxidized α-helical form of Aβ1–40 (Aβ1–40*). The increased abundance of Aβ1–40* probably reflects a disease-specific alteration of the Aβ1–40 metabolism in DLB. We conclude that Aβ peptide patterns reflect disease-specific pathophysiological pathways of different dementia syndromes as distinct neurochemical phenotypes. Although Aβ peptide patterns failed to fulfil the requirements for a sole biomarker, their combined evaluation with other biomarkers is promising in neurochemical dementia diagnosis. It is noteworthy that DLB and PDD exhibit distinct clinical temporal courses, despite their similar neuropathological appearance. Their distinct molecular phenotypes support the view of different pathophysiological pathways for each of these neurodegenerative diseases.


Lancet Neurology | 2013

Intravenous immunoglobulin for treatment of mild-to-moderate Alzheimer's disease: a phase 2, randomised, double-blind, placebo-controlled, dose-finding trial

Richard Dodel; Axel Rominger; Peter Bartenstein; Frederik Barkhof; Kaj Blennow; Stefan Förster; Yaroslav Winter; Jan Philipp Bach; Julius Popp; Judith Alferink; Jens Wiltfang; Katharina Buerger; Markus Otto; Piero Antuono; Michael Jacoby; Ralph W. Richter; James C. Stevens; Isaac Melamed; Jerome Goldstein; Stefan Haag; Stefan Wietek; Martin R. Farlow; Frank Jessen

BACKGROUND Three small trials suggest that intravenous immunoglobulin can affect biomarkers and symptoms of mild-to-moderate Alzheimers disease. We tested the safety, effective dose, and infusion interval of intravenous immunoglobulin in such patients. METHODS We did a multicentre, placebo-controlled phase 2 trial at seven sites in the USA and five in Germany. Participants with probable Alzheimers disease aged 50-85 years were randomly assigned (by a computer-generated randomisation sequence, with block sizes of eight) to infusions every 4 weeks (0·2, 0·5, or 0·8 g intravenous immunoglobulin per kg bodyweight, or placebo) or infusions every 2 weeks (0·1, 0·25, or 0·4 g/kg, or placebo). Patients, caregivers, investigators assessing outcomes, and staff at imaging facilities and the clinical research organisation were masked to treatment allocation, but dispensing pharmacists, the statistician, and the person responsible for final PET analyses were not. Treatment was masked with opaque pouches and infusion lines. The primary endpoint was median area under the curve (AUC) of plasma amyloid β (Aβ)(1-40) between the last infusion and the final visit (2 weeks or 4 weeks depending on infusion interval) in the intention-to-treat population. The trial is registered at ClinicalTrials.gov (NCT00812565) and controlled-trials.com (ISRCTN64846759). FINDINGS 89 patients were assessed for eligibility, of whom 58 were enrolled and 55 included in the primary analysis. Median AUC of plasma Aβ(1-40) was not significantly different for intravenous immunoglobulin compared with placebo for five of the six intervention groups (-18·0 [range -1347·0 to 1068·5] for 0·2 g/kg, -364·3 [-5834·5 to 1953·5] for 0·5 g/kg, and -351·8 [-1084·0 to 936·5] for 0·8 g/kg every 4 weeks vs -116·3 [-1379·0 to 5266·0] for placebo; and -13·8 [-1729·0 to 307·0] for 0·1 g/kg, and -32·5 [-1102·5 to 451·5] for 0·25 g/kg every 2 weeks vs 159·5 [51·5 to 303·0] for placebo; p>0·05 for all). The difference in median AUC of plasma Aβ(1-40) between the 0·4 g/kg every 2 weeks group (47·0 [range -341·0 to 72·5]) and the placebo group was significant (p=0·0216). 25 of 42 (60%) patients in the intervention group versus nine of 14 (64%) receiving placebo had an adverse event. Four of 42 (10%) patients in the intravenous immunoglobulin group versus four of 14 (29%) receiving placebo had a serious adverse event, including one stroke in the intervention group. INTERPRETATION Intravenous immunoglobulin may have an acceptable safety profile. Our results did not accord with those from previous studies. Longer trials with greater power are needed to assess the cognitive and functional effects of intravenous immunoglobulin in patients with Alzheimers disease.


Dementia and Geriatric Cognitive Disorders | 2006

Beta-Amlyoid 1-42 and Tau-Protein in Cerebrospinal Fluid of Patients with Parkinson's Disease Dementia

Brit Mollenhauer; Claudia Trenkwalder; Nicolas von Ahsen; Mirko Bibl; Petra Steinacker; Peter Brechlin; Jan Schindehuette; Sigrid Poser; Jens Wiltfang; Markus Otto

Measurement of τ-protein and β-amyloid1–42 (Aβ42) in cerebrospinal fluid (CSF) has gained increasing acceptance in the differential diagnosis of Alzheimer’s disease. We investigated CSF τ-protein and Aβ42 concentrations in 73 patients with advanced idiopathic Parkinson’s disease with dementia (PDD) and 23 patients with idiopathic Parkinson’s disease without dementia (PD) and in a comparison group of 41 non-demented neurological patients (CG) using commercially available enzyme-linked-immunoabsorbant-assay (ELISA). τ-Protein levels were statistically significantly higher and Aβ42 lower in the PDD patients compared to PD patients and the CG. This observation was most marked (p < 0.05) in a subgroup of patients with PDD carrying the apolipoprotein genotype Ε3/Ε3. The distribution of the apolipoprotein genotypes in PDD and PD patients was similar to that of the CG. Although a significant difference in τ-protein values was observed between PDD and CG, no diagnostic cut-off value was established. These findings suggest that such protein CSF changes may help to support the clinical diagnosis of cognitive decline in PD and that there may be apolipoprotein-E-isoform-specific differences in CSF protein regulation in advanced PDD.


BMJ | 1998

Diagnosis of Creutzfeldt-Jakob disease by measurement of S100 protein in serum: prospective case-control study

Markus Otto; Jens Wiltfang; Ekkehard Schütz; Inga Zerr; Anke Otto; Annette Pfahlberg; Olaf Gefeller; Manfred Uhr; Armin Giese; Thomas Weber; Hans A. Kretzschmar; Sigrid Poser

Abstract Abstract Objective: To analyse serum concentrations of brain specific S100 protein in patients with Creutzfeldt-Jakob disease and in controls. Design: Prospective case-control study. Setting: National Creutzfeldt-Jakob disease surveillance unit. Subjects: 224 patients referred to the surveillance unit with suspected Creutzfeldt-Jakob disease and 35 control patients without dementia. Main outcome measure: Serum concentration of S100 protein in patients with Creutzfeldt-Jakob disease, in patients with other diseases causing dementia, and in the control group. Results: Of the 224 patients with suspected Creutzfeldt-Jakob disease, 65 were classed as definitely having the disease after neuropathological verification, an additional 6 were classed as definitely having the disease as a result of a genetic mutation, 43 as probably having the disease, 36 as possibly having the disease, and 74 patients were classed as having other disease. In the 108 patients classed as definitely or probably having Creutzfeldt-Jakob disease the median serum concentration of S100 was 395 pg/ml (SD 387 pg/ml). This was significantly higher than concentrations found in the 74 patients classed as having other diseases (median 109 pg/ml; SD 177 pg/ml; P=0.0001). At a cut off point of 213 pg/ml sensitivity for the diagnosis of the disease was 77.8% (95% confidence interval 68.8% to 85.2%) and specificity was 81.1% (70.3% to 89.3%). There was a significant difference in survival at different concentrations of S100 in Kaplan-Meier curves (P=0.023). Conclusion: Measurement of serum concentrations of S100 is a valuable tool which can be used more easily than tests on cerebrospinal fluid in the differential diagnosis of Creutzfeldt-Jakob disease. More studies are needed to determine whether serial testing of serum S100 improves diagnostic accuracy. Key messages Creutzfeldt-Jakob disease is a rare, fatal neurodegenerative disease. Diagnosis is made clinically and neuropathologically There is no serum test which allows the diagnosis to be made while the patient is alive In this study raised serum concentrations of S100 protein were found in patients with Creutzfeldt-Jakob disease Serum concentrations of S100 could be used with a sensitivity of 77.8% and a specificity of 81.1% to confirm Creutzfeldt-Jakob disease in the differential diagnosis of diseases that cause dementia Serial measurement of S100 concentrations will enhance diagnostic accuracy

Collaboration


Dive into the Jens Wiltfang's collaboration.

Top Co-Authors

Avatar

Johannes Kornhuber

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hermann Esselmann

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Piotr Lewczuk

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Mirko Bibl

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eckart Rüther

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Bernhard Kis

University of Duisburg-Essen

View shared research outputs
Researchain Logo
Decentralizing Knowledge