Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jian Kui Liu is active.

Publication


Featured researches published by Jian Kui Liu.


Fungal Diversity | 2013

Families of Dothideomycetes

Kevin D. Hyde; E. B. Gareth Jones; Jian Kui Liu; Hiran A. Ariyawansa; Eric Boehm; Saranyaphat Boonmee; Uwe Braun; Putarak Chomnunti; Pedro W. Crous; Dong Qin Dai; Paul Diederich; Asha J. Dissanayake; Mingkhuan Doilom; Francesco Doveri; Singang Hongsanan; Ruvishika S. Jayawardena; James D. Lawrey; Yan Mei Li; Yong Xiang Liu; Robert Lücking; Jutamart Monkai; Lucia Muggia; Matthew P. Nelsen; Ka-Lai Pang; Rungtiwa Phookamsak; Indunil C. Senanayake; Carol A. Shearer; Satinee Suetrong; Kazuaki Tanaka; Kasun M. Thambugala

Dothideomycetes comprise a highly diverse range of fungi characterized mainly by asci with two wall layers (bitunicate asci) and often with fissitunicate dehiscence. Many species are saprobes, with many asexual states comprising important plant pathogens. They are also endophytes, epiphytes, fungicolous, lichenized, or lichenicolous fungi. They occur in terrestrial, freshwater and marine habitats in almost every part of the world. We accept 105 families in Dothideomycetes with the new families Anteagloniaceae, Bambusicolaceae, Biatriosporaceae, Lichenoconiaceae, Muyocopronaceae, Paranectriellaceae, Roussoellaceae, Salsugineaceae, Seynesiopeltidaceae and Thyridariaceae introduced in this paper. Each family is provided with a description and notes, including asexual and asexual states, and if more than one genus is included, the type genus is also characterized. Each family is provided with at least one figure-plate, usually illustrating the type genus, a list of accepted genera, including asexual genera, and a key to these genera. A phylogenetic tree based on four gene combined analysis add support for 64 of the families and 22 orders, including the novel orders, Dyfrolomycetales, Lichenoconiales, Lichenotheliales, Monoblastiales, Natipusillales, Phaeotrichales and Strigulales. The paper is expected to provide a working document on Dothideomycetes which can be modified as new data comes to light. It is hoped that by illustrating types we provide stimulation and interest so that more work is carried out in this remarkable group of fungi.


Fungal Diversity | 2014

Naming and outline of Dothideomycetes-2014 including proposals for the protection or suppression of generic names

Nalin N. Wijayawardene; Pedro W. Crous; Paul M. Kirk; David L. Hawksworth; Saranyaphat Boonmee; Uwe Braun; Dong Qin Dai; Melvina J. D’souza; Paul Diederich; Asha J. Dissanayake; Mingkhuan Doilom; Singang Hongsanan; E. B. Gareth Jones; Johannes Z. Groenewald; Ruvishika S. Jayawardena; James D. Lawrey; Jian Kui Liu; Robert Lücking; Hugo Madrid; Dimuthu S. Manamgoda; Lucia Muggia; Matthew P. Nelsen; Rungtiwa Phookamsak; Satinee Suetrong; Kazuaki Tanaka; Kasun M. Thambugala; Dhanushka N. Wanasinghe; Saowanee Wikee; Ying Zhang; André Aptroot

Article 59.1, of the International Code of Nomenclature for Algae, Fungi, and Plants (ICN; Melbourne Code), which addresses the nomenclature of pleomorphic fungi, became effective from 30 July 2011. Since that date, each fungal species can have one nomenclaturally correct name in a particular classification. All other previously used names for this species will be considered as synonyms. The older generic epithet takes priority over the younger name. Any widely used younger names proposed for use, must comply with Art. 57.2 and their usage should be approved by the Nomenclature Committee for Fungi (NCF). In this paper, we list all genera currently accepted by us in Dothideomycetes (belonging to 23 orders and 110 families), including pleomorphic and non-pleomorphic genera. In the case of pleomorphic genera, we follow the rulings of the current ICN and propose single generic names for future usage. The taxonomic placements of 1261 genera are listed as an outline. Protected names and suppressed names for 34 pleomorphic genera are listed separately. Notes and justifications are provided for possible proposed names after the list of genera. Notes are also provided on recent advances in our understanding of asexual and sexual morph linkages in Dothideomycetes. A phylogenetic tree based on four gene analyses supported 23 orders and 75 families, while 35 families still lack molecular data.


Fungal Diversity | 2015

Fungal diversity notes 1–110: taxonomic and phylogenetic contributions to fungal species

Jian Kui Liu; Kevin D. Hyde; E. B. Gareth Jones; Hiran A. Ariyawansa; Darbhe J. Bhat; Saranyaphat Boonmee; Sajeewa S. N. Maharachchikumbura; Eric H. C. McKenzie; Rungtiwa Phookamsak; Chayanard Phukhamsakda; Belle Damodara Shenoy; Mohamed A. Abdel-Wahab; Bart Buyck; Jie Chen; K. W. Thilini Chethana; Chonticha Singtripop; Dong Qin Dai; Yu Cheng Dai; Dinushani A. Daranagama; Asha J. Dissanayake; Mingkwan Doilom; Melvina J. D’souza; Xin Lei Fan; Ishani D. Goonasekara; Kazuyuki Hirayama; Sinang Hongsanan; Subashini C. Jayasiri; Ruvishika S. Jayawardena; Samantha C. Karunarathna; Wen-Jing Li

This paper is a compilation of notes on 110 fungal taxa, including one new family, 10 new genera, and 76 new species, representing a wide taxonomic and geographic range. The new family, Paradictyoarthriniaceae is introduced based on its distinct lineage in Dothideomycetes and its unique morphology. The family is sister to Biatriosporaceae and Roussoellaceae. The new genera are Allophaeosphaeria (Phaeosphaeriaceae), Amphibambusa (Amphisphaeriaceae), Brunneomycosphaerella (Capnodiales genera incertae cedis), Chaetocapnodium (Capnodiaceae), Flammeascoma (Anteagloniaceae), Multiseptospora (Pleosporales genera incertae cedis), Neogaeumannomyces (Magnaporthaceae), Palmiascoma (Bambusicolaceae), Paralecia (Squamarinaceae) and Sarimanas (Melanommataceae). The newly described species are the Ascomycota Aliquandostipite manochii, Allophaeosphaeria dactylidis, A. muriformia, Alternaria cesenica, Amphibambusa bambusicola, Amphisphaeria sorbi, Annulohypoxylon thailandicum, Atrotorquata spartii, Brunneomycosphaerella laburni, Byssosphaeria musae, Camarosporium aborescentis, C. aureum, C. frutexensis, Chaetocapnodium siamensis, Chaetothyrium agathis, Colletotrichum sedi, Conicomyces pseudotransvaalensis, Cytospora berberidis, C. sibiraeae, Diaporthe thunbergiicola, Diatrype palmicola, Dictyosporium aquaticum, D. meiosporum, D. thailandicum, Didymella cirsii, Dinemasporium nelloi, Flammeascoma bambusae, Kalmusia italica, K. spartii, Keissleriella sparticola, Lauriomyces synnematicus, Leptosphaeria ebuli, Lophiostoma pseudodictyosporium, L. ravennicum, Lophiotrema eburnoides, Montagnula graminicola, Multiseptospora thailandica, Myrothecium macrosporum, Natantispora unipolaris, Neogaeumannomyces bambusicola, Neosetophoma clematidis, N. italica, Oxydothis atypica, Palmiascoma gregariascomum, Paraconiothyrium nelloi, P. thysanolaenae, Paradictyoarthrinium tectonicola, Paralecia pratorum, Paraphaeosphaeria spartii, Pestalotiopsis digitalis, P. dracontomelon, P. italiana, Phaeoisaria pseudoclematidis, Phragmocapnias philippinensis, Pseudocamarosporium cotinae, Pseudocercospora tamarindi, Pseudotrichia rubriostiolata, P. thailandica, Psiloglonium multiseptatum, Saagaromyces mangrovei, Sarimanas pseudofluviatile, S. shirakamiense, Tothia spartii, Trichomerium siamensis, Wojnowicia dactylidicola, W. dactylidis and W. lonicerae. The Basidiomycota Agaricus flavicentrus, A. hanthanaensis, A. parvibicolor, A. sodalis, Cantharellus luteostipitatus, Lactarius atrobrunneus, L. politus, Phylloporia dependens and Russula cortinarioides are also introduced. Epitypifications or reference specimens are designated for Hapalocystis berkeleyi, Meliola tamarindi, Pallidocercospora acaciigena, Phaeosphaeria musae, Plenodomus agnitus, Psiloglonium colihuae, P. sasicola and Zasmidium musae while notes and/or new sequence data are provided for Annulohypoxylon leptascum, A. nitens, A. stygium, Biscogniauxia marginata, Fasciatispora nypae, Hypoxylon fendleri, H. monticulosum, Leptosphaeria doliolum, Microsphaeropsis olivacea, Neomicrothyrium, Paraleptosphaeria nitschkei, Phoma medicaginis and Saccotheciaceae. A full description of each species is provided with light micrographs (or drawings). Molecular data is provided for 90 taxa and used to generate phylogenetic trees to establish a natural classification for species.


Fungal Diversity | 2014

Improving ITS sequence data for identification of plant pathogenic fungi

R. Henrik Nilsson; Kevin D. Hyde; Julia Pawłowska; Martin Ryberg; Leho Tedersoo; Anders Bjørnsgard Aas; Siti Aisyah Alias; Artur Alves; Cajsa Lisa Anderson; Alexandre Antonelli; A. Elizabeth Arnold; Barbara Bahnmann; Mohammad Bahram; Johan Bengtsson-Palme; Anna Berlin; Sara Branco; Putarak Chomnunti; Asha J. Dissanayake; Rein Drenkhan; Hanna Friberg; Tobias Guldberg Frøslev; Bettina Halwachs; Martin Hartmann; Béatrice Henricot; Ruvishika S. Jayawardena; Ari Jumpponen; Håvard Kauserud; Sonja Koskela; Tomasz Kulik; Kare Liimatainen

SummaryPlant pathogenic fungi are a large and diverse assemblage of eukaryotes with substantial impacts on natural ecosystems and human endeavours. These taxa often have complex and poorly understood life cycles, lack observable, discriminatory morphological characters, and may not be amenable to in vitro culturing. As a result, species identification is frequently difficult. Molecular (DNA sequence) data have emerged as crucial information for the taxonomic identification of plant pathogenic fungi, with the nuclear ribosomal internal transcribed spacer (ITS) region being the most popular marker. However, international nucleotide sequence databases are accumulating numerous sequences of compromised or low-resolution taxonomic annotations and substandard technical quality, making their use in the molecular identification of plant pathogenic fungi problematic. Here we report on a concerted effort to identify high-quality reference sequences for various plant pathogenic fungi and to re-annotate incorrectly or insufficiently annotated public ITS sequences from these fungal lineages. A third objective was to enrich the sequences with geographical and ecological metadata. The results – a total of 31,954 changes – are incorporated in and made available through the UNITE database for molecular identification of fungi (http://unite.ut.ee), including standalone FASTA files of sequence data for local BLAST searches, use in the next-generation sequencing analysis platforms QIIME and mothur, and related applications. The present initiative is just a beginning to cover the wide spectrum of plant pathogenic fungi, and we invite all researchers with pertinent expertise to join the annotation effort.


Fungal Diversity | 2016

Families of Sordariomycetes

Sajeewa S. N. Maharachchikumbura; Kevin D. Hyde; E. B. Gareth Jones; Eric H. C. McKenzie; Jayarama D. Bhat; Monika C. Dayarathne; Shi Ke Huang; Chada Norphanphoun; Indunil C. Senanayake; Rekhani H. Perera; Qiu Ju Shang; Yuan-Pin Xiao; Melvina J. D’souza; Sinang Hongsanan; Ruvishika S. Jayawardena; Dinushani A. Daranagama; Sirinapa Konta; Ishani D. Goonasekara; Wen Ying Zhuang; Rajesh Jeewon; Alan J. L. Phillips; Mohamed A. Abdel-Wahab; Abdullah M. Al-Sadi; Ali H. Bahkali; Saranyaphat Boonmee; Nattawut Boonyuen; Ratchadawan Cheewangkoon; Asha J. Dissanayake; Ji-Chuan Kang; Qi Rui Li

Sordariomycetes is one of the largest classes of Ascomycota that comprises a highly diverse range of fungi characterized mainly by perithecial ascomata and inoperculate unitunicate asci. The class includes many important plant pathogens, as well as endophytes, saprobes, epiphytes, coprophilous and fungicolous, lichenized or lichenicolous taxa. They occur in terrestrial, freshwater and marine habitats worldwide. This paper reviews the 107 families of the class Sordariomycetes and provides a modified backbone tree based on phylogenetic analysis of four combined loci, with a maximum five representative taxa from each family, where available. This paper brings together for the first time, since Barrs’ 1990 Prodromus, descriptions, notes on the history, and plates or illustrations of type or representative taxa of each family, a list of accepted genera, including asexual genera and a key to these taxa of Sordariomycetes. Delineation of taxa is supported where possible by molecular data. The outline is based on literature to the end of 2015 and the Sordariomycetes now comprises six subclasses, 32 orders, 105 families and 1331 genera. The family Obryzaceae and Pleurotremataceae are excluded from the class.


Fungal Diversity | 2015

Phylogenetic relationships and morphological reappraisal of Melanommataceae (Pleosporales)

Qing Tian; Jian Kui Liu; Kevin D. Hyde; Dhanushka N. Wanasinghe; Saranyaphat Boonmee; Subashini C. Jayasiri; Zong Long Luo; Joanne E. Taylor; Alan J. L. Phillips; Darbhe J. Bhat; Wen-Jing Li; Hiran A. Ariyawansa; Kasun M. Thambugala; E. B. Gareth Jones; Putarak Chomnunti; Ali H. Bahkali; Jianchu Xu; Erio Camporesi

The family Melanommataceae is widespread in temperate and subtropical regions and species invariably occur on twigs or bark of various woody plants in terrestrial, marine or freshwater habitats. In this paper, the type species of 26 genera of the family are re-described and illustrated. A multi-gene phylogeny based on maximum likelihood and Bayesian analyses of LSU, SSU, RPB2 and EF-1α sequence data of species of Melanommataceae is provided. The new genera, Muriformistrickeria, Pseudostrickeria and Thysanolaenae are introduced. Anomalemma is synonymized under Exosporiella. Acrocordiopsis, Astrosphaeriella, Beverwykella, Caryosporella, Sporidesmiella and Pseudotrichia are excluded from Melanommataceae based on molecular phylogenetic analyses. Presently, 20 genera are accepted in Melanommataceae. Based on the phylogenetic data, five new species, Byssosphaeria siamensis, Herpotrichia vaginatispora, Pseudostrickeria muriformis, Pseudostrickeria ononidis and Muriformistrickeria rubi, are introduced.


Mycological Progress | 2018

Pseudostanjehughesia aquitropica gen. et sp. nov. and Sporidesmium sensu lato species from freshwater habitats

Jing Yang; Sajeewa S. N. Maharachchikumbura; Jian Kui Liu; Kevin D. Hyde; E. B. Gareth Jones; Abdullah M. Al-Sadi; Zuo Yi Liu

Phylogenetic analyses of multi-gene (LSU, SSU, TEF1α, RPB2 and ITS) sequence data support the placement of several Sporidesmium-like species within Sordariomycetes. The taxa collected in the present study were from unidentified submerged twigs in a stream in Prachuap Khiri Khan and Phang Nga Provinces, Thailand and Guizhou Province, China. Morphological examination and phylogenetic analyses provide evidence for several taxonomic novelties, including a new genus (Pseudostanjehughesia) and five novel species (Distoseptispora guttulata, D. phangngaensis, D. suoluoensis, Pseudostanjehughesia aquitropica and Sporidesmium gyrinomorphum). The collections also comprised three previously described species (Distoseptispora multiseptata, Sporidesmium thailandense and S. tropicale). Descriptions and illustrations of the above taxa are provided and their systematic placement is discussed. The description of Distoseptispora is emended.


Fungal Diversity | 2017

The ranking of fungi: a tribute to David L. Hawksworth on his 70th birthday

Kevin D. Hyde; Sajeewa S. N. Maharachchikumbura; Sinang Hongsanan; Milan C. Samarakoon; Robert Lücking; Dhandevi Pem; Dulanjalee Harishchandra; Rajesh Jeewon; Rui-Lin Zhao; Jianchu Xu; Jian Kui Liu; Abdullah M. Al-Sadi; Ali H. Bahkali; Abdallah M. Elgorban


Mycosphere | 2018

Mycosphere notes 169-224

Kevin D. Hyde; N. Chaiwan; Chada Norphanphoun; Saranyaphat Boonmee; Erio Camporesi; K. W. T. Chethana; Monika C. Dayarathne; de Silva, N., I; Asha J. Dissanayake; Anusha H. Ekanayaka; Sinang Hongsanan; Shi-Ke Huang; Subashini C. Jayasiri; Ruvishika S. Jayawardena; H. B. Jiang; Anuruddha Karunarathna; Chuan-Gen Lin; Jian Kui Liu; N. G. Liu; Yong-Zhong Lu; Zong-Long Luo; S. S. N. Maharachchimbura; Ishara S. Manawasinghe; D. Pem; Rekhani H. Perera; Chayanard Phukhamsakda; Milan C. Samarakoon; C. Senwanna; Qiu-Ju Shang; Danushka S. Tennakoon


Phytotaxa | 2016

Additions to Karst Fungi 1: Botryosphaeria minutispermatia sp. nov., from Guizhou Province, China

Hiran A. Ariyawansa; Kevin D. Hyde; Jian Kui Liu; Shi-Ping Wu; Zuo Yi Liu

Collaboration


Dive into the Jian Kui Liu's collaboration.

Top Co-Authors

Avatar

Kevin D. Hyde

Mae Fah Luang University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong Qin Dai

Mae Fah Luang University

View shared research outputs
Researchain Logo
Decentralizing Knowledge