Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jing-Cai Liu is active.

Publication


Featured researches published by Jing-Cai Liu.


Cell Death and Disease | 2013

LHX6 acts as a novel potential tumour suppressor with epigenetic inactivation in lung cancer

Wei Liu; Xingyu Jiang; Han F; Yu Li; Chen Hq; Yizhi Liu; Cao J; Jing-Cai Liu

LIM homeobox domain 6 (LHX6) is a putative transcriptional regulator that controls the differentiation and development of neural and lymphoid cells. However, the function of LHX6 in cancer development remains largely unclear. Recently, we found that LHX6 is hypermethylated in lung cancer. In this study, we analysed its epigenetic regulation, biological functions, and related molecular mechanisms in lung cancer. Methylation status was evaluated by methylation-specific PCR and bisulfite genomic sequencing. LHX6 mRNA levels were measured in relation to the methylation status. The effects of LHX6 expression on tumourigenesis were studied in vitro and in vivo. LHX6 was readily expressed in normal lung tissues without methylation, but was downregulated or silenced in lung cancer cell lines and tissues with hypermethylation status. Treatment of lung cancer cells with the demethylating agent 5-aza-2′-deoxycytidine restored LHX6 expression. Moreover, LHX6 hypermethylation was detected in 56% (52/93) of primary lung cancers compared with none (0/20) of the tested normal lung tissues. In lung cancer cell lines 95D and H358, forced expression of LHX6 suppressed cell viability, colony formation, and migration, induced apoptosis and G1/S arrest, and inhibited their tumorigenicity in nude mice. On the other hand, knockdown of LHX6 expression by RNA interference increased cell proliferation and inhibited apoptosis and cell cycle arrest. These effects were associated with upregulation of p21 and p53, and downregulation of Bcl-2, cyclinD1, c-myc, CD44, and MMP7. In conclusion, our results suggest that LHX6 is a putative tumour suppressor gene with epigenetic silencing in lung cancer.


Reproduction, Fertility and Development | 2015

Transgenerational inheritance of ovarian development deficiency induced by maternal diethylhexyl phthalate exposure

Xi-Feng Zhang; Teng Zhang; Zhe Han; Jing-Cai Liu; Yu-Ping Liu; Jun-Yu Ma; Lan Li; Wei Shen

Diethylhexyl phthalate (DEHP) is a widely used industrial additive for increasing plastic flexibility. It disrupts the physiological functions of endogenous hormones and induces abnormal development of mammals. The objectives of the present study were to evaluate the effects of DEHP exposure on ovarian development of pregnant mice and whether the effects are inheritable. We found that the synthesis of oestradiol in pregnant mice after DEHP exposure was significantly decreased, and that the first meiotic progression of female fetal germ cells was delayed. Furthermore, the DNA methylation level of Stra8 was increased and the expression levels of Stra8 were significantly decreased. An accelerated rate of follicle recruitment in F1 mice was responsible for the depletion of the primordial-follicle pool. Maternal DEHP exposure also significantly accelerated the recruitment of primordial follicles in F2 mice. In conclusion, our results indicated that maternal DEHP exposure induced ovarian development deficiency, which was transgenerational in mice.


Tree Physiology | 2013

Chimeric repressor of PtSND2 severely affects wood formation in transgenic Populus

Haihai Wang; R.J. Tang; H.Q. Liu; H. Y. Chen; Jing-Cai Liu; Haixia Zhang

NAC domain transcription factors are important regulators that activate the secondary wall biosynthesis in wood formation. In this work, we investigated the possible functions of an NAC family member SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN2 (PtSND2) using chimeric repressor silencing technology. Reverse transcription-polymerase chain reaction, subcellular localization and transcriptional activation analyses indicated that PtSND2 is a wood-associated transcriptional factor with the predicted transcriptional activation activity, which could be inhibited by the repression domain SUPERMAN REPRESSION DOMAIN X (SRDX) in yeast. Wood formation was severely repressed in transgenic poplar plants overexpressing PtSND2-SRDX. Meanwhile, the secondary cell wall thickness of xylem fibers was restrained, and the contents of cellulose and lignin were obviously decreased in the stems of transgenic plants. Further studies indicated that expressions of a number of wood-associated genes were down-regulated in the stems of transgenic plants. Our results suggest that PtSND2 may play important roles during the secondary growth of stems in poplar.


PLOS ONE | 2016

Di (2-ethylhexyl) Phthalate Exposure Impairs Growth of Antral Follicle in Mice

Lan Li; Jing-Cai Liu; Fang-Nong Lai; Huan-Qi Liu; Xi-Feng Zhang; Paul W. Dyce; Wei Shen; Hong Chen

Di (2-ethylhexyl) phthalate (DEHP) is a widely used plastic additive. As an environmental endocrine disruptor, it has been shown to be harmful to the mammalian reproductive system. Previous studies indicated that DEHP inhibited the development of mouse ovarian follicles. However, the mechanisms by which DEHP affects ovarian antral follicle development during the pre-puberty stage are poorly understand. Thus, we investigated the effects of direct DEHP exposure on antral follicle growth in pre-pubescent mice by use of intraperitoneal injection. Our results demonstrated that the percentage of large antral follicles was significantly reduced when mice were exposed to 20 or 40 μg/kg DEHP every 5 days from postnatal day 0 (0 dpp) to 15 dpp. In 20 dpp, we performed microarray of these ovaries. The microarray results indicated that mRNA levels of apoptosis related genes were increased. The mRNA levels of the apoptosis and cell proliferation (negative) related genes Apoe, Agt, Glo1 and Grina were increased after DEHP exposure. DEHP induced the differential gene expression of Hsp90ab1, Rhoa, Grina and Xdh which may play an important role in this process. In addition, TUNEL staining and immunofluorescence showed that DEHP exposure significantly increased the number of TUNEL, Caspase3 and γH2AX positive ovarian somatic cells within the mouse ovaries. Flow cytometer analyses of redox-sensitive probes showed that DEHP caused the accumulation of reactive oxygen species. Moreover, the mRNA expression of ovarian somatic cell antioxidative enzymes was down-regulated both in vivo and in vitro. In conclusion, our data here demonstrated that DEHP exposure induced oxidative stress and ovarian somatic cell apoptosis, and thus may impact antral follicle enlargement during the pre-pubertal stage in mice.


Nanotoxicology | 2017

Cutaneous applied nano-ZnO reduce the ability of hair follicle stem cells to differentiate

Wei Ge; Yong Zhao; Fang-Nong Lai; Jing-Cai Liu; Yuan-Chao Sun; Jun-Jie Wang; Shun-Feng Cheng; Xi-Feng Zhang; Li-Lan Sun; Lan Li; Paul W. Dyce; Wei Shen

Abstract The ability of metal oxide nanoparticles to penetrate the skin has aroused a great deal of interest during the past decade due to concerns over the safety of topically applied sunscreens that contain physical UV-resistant metal particles, such as nano-Zinc oxide (nZnO). Previous studies demonstrate that metal oxide nanoparticles accumulate in skin furrows and hair follicles following topical application while little is known about the consequence of these nanoparticles on skin homeostasis. The current investigation tested the effects of nZnO (0.5 mg/day mouse) on hair follicle physiology. Topical application of Vaseline containing nZnO, bulk ZnO (bZnO), or ionized Zn to newborn mice vibrissa pad over a period of 7 consecutive days revealed that nZnO accumulated within hair follicles, and this induced the apoptosis of hair follicle stem cells (HFSCs). In vitro studies also indicated that nZnO exposure caused obvious DNA damage and induced apoptosis in HFSCs. Furthermore, it was found that nZnO exposure perturbed genes associated with HFSC apoptosis, cell communication, and differentiation. HFSCs transplantation assay demonstrated that the potential of HFSCs to differentiate was reduced. This investigation indicates a potential risk of topically applied ZnO nanoparticles on skin homeostasis.


Reproduction, Fertility and Development | 2016

Regulation of primordial follicle recruitment by cross-talk between the Notch and phosphatase and tensin homologue (PTEN)/AKT pathways

Lin-Qing Wang; Jing-Cai Liu; Chun-Lei Chen; Shun-Feng Cheng; Xiao-Feng Sun; Yong Zhao; Shen Yin; Zhu-Mei Hou; Bo Pan; Cheng Ding; Wei Shen; Xi-Feng Zhang

The growth of oocytes and the development of follicles require certain pathways involved in cell proliferation and survival, such as the phosphatidylinositol 3-kinase (PI3K) pathway and the Notch signalling pathway. The aim of the present study was to investigate the interaction between Notch and the PI3K/AKT signalling pathways and their effects on primordial follicle recruitment. When the Notch pathway was inhibited by L-685,458 or N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycinet-butyl ester (DAPT) in vitro, the expression of genes in the pathway and the percentage of oocytes in growing follicles decreased significantly in mouse ovaries. By 2 days postpartum, ovaries exposed to DAPT, short interference (si) RNA against Notch1 or siRNA against Hairy and enhancer of split-1 (Hes1) had significantly decreased expression of HES1, the target protein of the Notch signalling pathway. In contrast, expression of phosphatase and tensin homologue (Pten), a negative regulator of the AKT signalling pathway, was increased significantly. Co immunoprecipitation (Co-IP) revealed an interaction between HES1 and PTEN. In addition, inhibition of the Notch signalling pathway suppressed AKT phosphorylation and the proliferation of granulosa cells. In conclusion, the recruitment of primordial follicles was affected by the proliferation of granulosa cells and regulation of the interaction between the Notch and PI3K/AKT signalling pathways.


PLOS ONE | 2016

Regulation of MicroRNAs, and the Correlations of MicroRNAs and Their Targeted Genes by Zinc Oxide Nanoparticles in Ovarian Granulosa Cells

Yong Zhao; Lan Li; Lingjiang Min; Lian-Qin Zhu; Qing-Yuan Sun; Xin-Qi Liu; Wei-Dong Zhang; Wei Ge; Jun-Jie Wang; Jing-Cai Liu; Zhi-Hui Hao

Zinc oxide (ZnO) nanoparticles (NPs) have been applied in numerous industrial products and personal care products like sunscreens and cosmetics. The released ZnO NPs from consumer and household products into the environment might pose potential health issues for animals and humans. In this study the expression of microRNAs and the correlations of microRNAs and their targeted genes in ZnO NPs treated chicken ovarian granulosa cells were investigated. ZnSO4 was used as the sole Zn2+ provider to differentiate the effects of NPs from Zn2+. It was found that ZnO-NP-5 μg/ml specifically regulated the expression of microRNAs involved in embryonic development although ZnO-NP-5 μg/ml and ZnSO4-10 μg/ml treatments produced the same intracellular Zn concentrations and resulted in similar cell growth inhibition. And ZnO-NP-5 μg/ml also specifically regulated the correlations of microRNAs and their targeted genes. This is the first investigation that intact NPs in ZnO-NP-5 μg/ml treatment specifically regulated the expression of microRNAs, and the correlations of microRNAs and their targeted genes compared to that by Zn2+. This expands our knowledge for biological effects of ZnO NPs and at the same time it raises the health concerns that ZnO NPs might adversely affect our biological systems, even the reproductive systems through regulation of specific signaling pathways.


Cell Death and Disease | 2017

Di (2-ethylhexyl) phthalate exposure impairs meiotic progression and DNA damage repair in fetal mouse oocytes in vitro.

Jing-Cai Liu; Fang-Nong Lai; Ling Li; Xiao-Feng Sun; Shun-Feng Cheng; Wei Ge; Yu-Feng Wang; Lan Li; Xi-Feng Zhang; Massimo De Felici; Paul W. Dyce; Wei Shen

Di (2-ethylhexyl) phthalate (DEHP), is the most common member of the class of phthalates that are used as plasticizers and have become common environmental contaminants. A number of studies have shown that DEHP exposure impacts reproductive health in both male and female mammals by acting as an estrogen analog. Here, we investigated the effects of DEHP on meiotic progression of fetal mouse oocytes by using an in vitro model of ovarian tissue culture. The results showed that 10 or 100 μM DEHP exposure inhibited the progression of oocytes throughout meiotic prophase I, specifically from the pachytene to diplotene stages. DEHP possibly impairs the ability to repair DNA double-strand breaks induced by meiotic recombination and as a consequence activates a pachytene check point. At later stages, such defects led to an increased number of oocytes showing apoptotic markers (TUNEL staining, expression of pro-apoptotic genes), resulting in reduced oocyte survival, gap junctions, and follicle assembly in the ovarian tissues. Microarray analysis of ovarian tissues exposed to DEHP showed altered expression of several genes including some involved in apoptosis and gonad development. The expression changes of some genes clustered in cell-cell communication and signal transduction, along with plasma membrane, extracellular matrix and ion channel function classes, were dependent on the DEHP concentration. Together, these results bring new support to the notion that exposure to DEHP during gestation might exert deleterious effects on ovary development, perturbing germ cell meiosis and the expression of genes involved in a wide range of biological processes including ovary development.


Cell Death & Differentiation | 2017

Complete in vitro oogenesis: retrospects and prospects

Jun-Jie Wang; Wei Ge; Jing-Cai Liu; Francesca Gioia Klinger; Paul W. Dyce; Massimo De Felici; Wei Shen

Precise control of mammalian oogenesis has been a traditional focus of reproductive and developmental biology research. Recently, new reports have introduced the possibility of obtaining functional gametes derived in vitro from stem cells. The potential to produce functional gametes from stem cells has exciting applications for regenerative medicine though still remains challenging. In mammalian females ovulation and fertilization is a privilege reserved for a small number of oocytes. In reality the vast majority of oocytes formed from primordial germ cells (PGCs) will undergo apoptosis, or other forms of cell death. Removal occurs during germ cell cyst breakdown and the establishment of the primordial follicle (PF) pool, during the long dormancy at the PF stage, or through follicular atresia prior to reaching the ovulatory stage. A way to solve this limitation could be to produce large numbers of oocytes, in vitro, from stem cells. However, to recapitulate mammalian oogenesis and produce fertilizable oocytes in vitro is a complex process involving several different cell types, precise follicular cell–oocyte reciprocal interactions, a variety of nutrients and combinations of cytokines, and precise growth factors and hormones depending on the developmental stage. In 2016, two papers published by Morohaku et al. and Hikabe et al. reported in vitro procedures that appear to reproduce efficiently these conditions allowing for the production, completely in a dish, of a relatively large number of oocytes that are fertilizable and capable of giving rise to viable offspring in the mouse. The present article offers a critical overview of these results as well as other previous work performed mainly in mouse attempting to reproduce oogenesis completely in vitro and considers some perspectives for the potential to adapt the methods to produce functional human oocytes.


Reproduction, Fertility and Development | 2015

Insulin regulates primordial-follicle assembly in vitro by affecting germ-cell apoptosis and elevating oestrogen.

Xin-Lei Feng; Yuan-Chao Sun; Min Zhang; Shun-Feng Cheng; Yanni Feng; Jing-Cai Liu; Hong-Hui Wang; Lan Li; Guo-Qing Qin; Wei Shen

Insulin is a protein secreted by pancreatic β-cells, which plays an important role in the regulation of ovarian function. However, the specific molecular mechanism of its function remains largely unknown. This study aimed to assess the effect of insulin on mouse folliculogenesis using an in vitro ovary-culture model. The results demonstrated that insulin promoted the proliferation of ovarian granulosa cells in vitro, and thereby accelerated the progress of folliculogenesis (the percentage of oocytes in cysts declined from 42.6% to 29.3%); however, the percentage of apoptotic oocytes increased after insulin treatment. Further investigation indicated that apoptosis occurred mainly in germ-cell cysts. After 3 days of insulin treatment, oestrogen in the culture medium of mouse ovaries significantly increased (P<0.01), while the lower dose of oestrogen promoted primordial-follicle assembly in vitro. In conclusion, insulin promoted folliculogenesis by facilitating germ-cell apoptosis within the cysts and upregulating oestrogen levels.

Collaboration


Dive into the Jing-Cai Liu's collaboration.

Top Co-Authors

Avatar

Wei Shen

Qingdao Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lan Li

Qingdao Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xi-Feng Zhang

Wuhan Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Wei Ge

Qingdao Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Fang-Nong Lai

Qingdao Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shun-Feng Cheng

Qingdao Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun-Jie Wang

Qingdao Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yong Zhao

Qingdao Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Massimo De Felici

University of Rome Tor Vergata

View shared research outputs
Researchain Logo
Decentralizing Knowledge