Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joachim Kaschta is active.

Publication


Featured researches published by Joachim Kaschta.


Journal of Materials Chemistry B | 2014

Fabrication of alginate–gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties

Bapi Sarker; Dimitrios G. Papageorgiou; Raquel Silva; Tobias Zehnder; Farhana Gul-E-Noor; Marko Bertmer; Joachim Kaschta; K. Chrissafis; Rainer Detsch; Aldo R. Boccaccini

Microencapsulation of cells by using biodegradable hydrogels offers numerous attractive features for a variety of biomedical applications including tissue engineering. This study highlights the fabrication of microcapsules from an alginate-gelatin crosslinked hydrogel (ADA-GEL) and presents the evaluation of the physico-chemical properties of the new microcapsules which are relevant for designing suitable microcapsules for tissue engineering. Alginate di-aldehyde (ADA) was synthesized by periodate oxidation of alginate which facilitates crosslinking with gelatin through Schiffs base formation between the free amino groups of gelatin and the available aldehyde groups of ADA. Formation of Schiffs base in ADA-GEL and aldehyde groups in ADA was confirmed by FTIR and NMR spectroscopy, respectively. Thermal degradation behavior of films and microcapsules fabricated from alginate, ADA and ADA-GEL was dependent on the hydrogel composition. The gelation time of ADA-GEL was found to decrease with increasing gelatin content. The swelling ratio of ADA-GEL microcapsules of all compositions was significantly decreased, whereas the degradability was found to increase with the increase of gelatin ratio. The surface morphology of the ADA-GEL microcapsules was totally different from that of alginate and ADA microcapsules, observed by SEM. Two different buffer solutions (with and without calcium salt) have an influence on the stability of microcapsules which had a significant effect on the gelatin release profile of ADA-GEL microcapsules in these two buffer solutions.


Rheologica Acta | 1994

Calculation of discrete retardation spectra from creep data — I. Method

Joachim Kaschta; R R. Schwarzl

A new method is proposed for the calculation of discrete retardation spectra from creep and recovery data. The calculation of the spectrum is not restricted to a special region of consistency, e.g., the terminal region. In a retardation time window which has to correspond to the time window of the original data set a spectrum can always be calculated. A linear regression technique is applied to the measured data in the iterative calculation of a spectrum with a logarithmically equidistant spacing of retardation times. In this way the number of retardation times is limited and problems with ill-posedness are avoided. In order to obtain only positive retardation strengths it is necessary to shift the set of prescribed logarithmically equidistant retardation times on the logarithmic time scale. It can be shown that there is a retardation time interval for this shift, in which the retardation times may be varied without obtaining negative retardation strengths. While varying the retardation times in this interval the relative error of description of the data passes through a distinct minimum. In this way a spectrum is obtained which best describes the input data. Generally, one retardation time per decade will be sufficient to describe the data within the limits of experimental error. In the case of noisy data, the method is shown to work just as well and leads to a smoothing of the original data set. The method may be used for the conversion of creep and recovery data to storage and loss compliance. The error connected with this procedure is discussed.


PLOS ONE | 2014

Evaluation of Fibroblasts Adhesion and Proliferation on Alginate-Gelatin Crosslinked Hydrogel

Bapi Sarker; Raminder Singh; Raquel Silva; Judith A. Roether; Joachim Kaschta; Rainer Detsch; Dirk W. Schubert; Iwona Cicha; Aldo R. Boccaccini

Due to the relatively poor cell-material interaction of alginate hydrogel, alginate-gelatin crosslinked (ADA-GEL) hydrogel was synthesized through covalent crosslinking of alginate di-aldehyde (ADA) with gelatin that supported cell attachment, spreading and proliferation. This study highlights the evaluation of the physico-chemical properties of synthesized ADA-GEL hydrogels of different compositions compared to alginate in the form of films. Moreover, in vitro cell-material interaction on ADA-GEL hydrogels of different compositions compared to alginate was investigated by using normal human dermal fibroblasts. Viability, attachment, spreading and proliferation of fibroblasts were significantly increased on ADA-GEL hydrogels compared to alginate. Moreover, in vitro cytocompatibility of ADA-GEL hydrogels was found to be increased with increasing gelatin content. These findings indicate that ADA-GEL hydrogel is a promising material for the biomedical applications in tissue-engineering and regeneration.


Rheologica Acta | 1994

Calculation of discrete retardation spectra from creep data — II. Analysis of measured creep curves

Joachim Kaschta; F. R. Schwarzl

An algorithm for the calculation of discrete, logarithmic equidistant retardation spectra from creep or recovery is applied to experimental data in different regions of consistency. Spectra in the glass-rubber transition region are given for technical poly(styrene), poly(methylmethacrylate), and poly(carbonate) as well as the course of all characteristic compliance type functions. The spectrum in the terminal region of a poly(styrene) of narrow molecular weight distribution is calculated both from creep and recovery data. The course of the dynamic moduli calculated from the spectra and by direct conversion is found in excellent agreement to measurements by means of a dynamic viscometer.


Journal of Chromatography A | 2011

Characterization of branched ultrahigh molar mass polymers by asymmetrical flow field-flow fractionation and size exclusion chromatography

T. Otte; Harald Pasch; Tibor Macko; Robert Brüll; Florian J. Stadler; Joachim Kaschta; Florian Becker; Michael Buback

The molar mass distribution (MMD) of synthetic polymers is frequently analyzed by size exclusion chromatography (SEC) coupled to multi angle light scattering (MALS) detection. For ultrahigh molar mass (UHM) or branched polymers this method is not sufficient, because shear degradation and abnormal elution effects falsify the calculated molar mass distribution and information on branching. High temperatures above 130 °C have to be applied for dissolution and separation of semi-crystalline materials like polyolefins which requires special hardware setups. Asymmetrical flow field-flow fractionation (AF4) offers the possibility to overcome some of the main problems of SEC due to the absence of an obstructing porous stationary phase. The SEC-separation mainly depends on the pore size distribution of the used column set. The analyte molecules can enter the pores of the stationary phase in dependence on their hydrodynamic volume. The archived separation is a result of the retention time of the analyte species inside SEC-column which depends on the accessibility of the pores, the residence time inside the pores and the diffusion ability of the analyte molecules. The elution order in SEC is typically from low to high hydrodynamic volume. On the contrary AF4 separates according to the diffusion coefficient of the analyte molecules as long as the chosen conditions support the normal FFF-separation mechanism. The separation takes place in an empty channel and is caused by a cross-flow field perpendicular to the solvent flow. The analyte molecules will arrange in different channel heights depending on the diffusion coefficients. The parabolic-shaped flow profile inside the channel leads to different elution velocities. The species with low hydrodynamic volume will elute first while the species with high hydrodynamic volume elute later. The AF4 can be performed at ambient or high temperature (AT-/HT-AF4). We have analyzed one low molar mass polyethylene sample and a number of narrow distributed polystyrene standards as reference materials with known structure by AT/HT-SEC and AT/HT-AF4. Low density polyethylenes as well as polypropylene and polybutadiene, containing high degrees of branching and high molar masses, have been analyzed with both methods. As in SEC the relationship between the radius of gyration (R(g)) or the molar mass and the elution volume is curved up towards high elution volumes, a correct calculation of the MMD and the molar mass average or branching ratio is not possible using the data from the SEC measurements. In contrast to SEC, AF4 allows the precise determination of the MMD, the molar mass averages as well as the degree of branching because the molar mass vs. elution volume curve and the conformation plot is not falsified in this technique. In addition, higher molar masses can be detected using HT-AF4 due to the absence of significant shear degradation in the channel. As a result the average molar masses obtained from AF4 are higher compared to SEC. The analysis time in AF4 is comparable to that of SEC but the adjustable cross-flow program allows the user to influence the separation efficiency which is not possible in SEC without a costly change of the whole column combination.


Journal of Rheology | 2009

Determination of method-invariant activation energies of long-chain branched low-density polyethylenes

Ute Keßner; Joachim Kaschta; Helmut Münstedt

The idea to use the temperature dependence of rheological properties, especially the flow activation energy, as a tool to investigate branching structures is well-known from literature. However, there is no common method to obtain activation energies, which are independent of the measuring quantity chosen, particularly, in the case of slightly thermorheologically complex polymers like low-density polyethylene (LDPE). Hence, differing activation energies result, which cannot unequivocally be correlated with the branching structure. This paper describes a method for the determination of method-independent activation energies for thermorheologically complex polymers like LDPE. From a generalized approach to the time-temperature superposition principle, a vertical shift factor is introduced, which is related to the temperature dependence of the linear steady-state compliance. In the case of the complex LDPE, a decrease in the linear steady-state compliance with temperature is found. Taking this experimentally...


Journal of Materials Chemistry B | 2014

Hybrid hydrogels based on keratin and alginate for tissue engineering

Raquel Silva; Raminder Singh; Bapi Sarker; Dimitrios G. Papageorgiou; Judith A. Juhasz; Judith A. Roether; Iwona Cicha; Joachim Kaschta; Dirk W. Schubert; K. Chrissafis; Rainer Detsch; Aldo R. Boccaccini

Novel hybrid hydrogels based on alginate and keratin were successfully produced for the first time. The self-assembly properties of keratin, and its ability to mimic the extracellular matrix were combined with the excellent chemical and mechanical stability and biocompatibility of alginate to produce 2D and 3D hybrid hydrogels. These hybrid hydrogels were prepared using two different approaches: sonication, to obtain 2D hydrogels, and a pressure-driven extrusion technique to produce 3D hydrogels. All results indicated that the composition of the hydrogels had a significant effect on their physical properties, and that they can easily be tuned to obtain materials suitable for biological applications. The cell-material interaction was assessed through the use of human umbilical vein endothelial cells, and the results demonstrated that the alginate/keratin hybrid biomaterials supported cell attachment, spreading and proliferation. The results proved that such novel hybrid hydrogels might find applications as scaffolds for soft tissue regeneration.


International Journal of Biological Macromolecules | 2015

Alginate-based hydrogels with improved adhesive properties for cell encapsulation

Bapi Sarker; Julia Rompf; Raquel Silva; Nadine Lang; Rainer Detsch; Joachim Kaschta; Ben Fabry; Aldo R. Boccaccini

Hydrogel-based biomaterials are ideal scaffolding matrices for microencapsulation, but they need to be modified to resemble the mechanical, structural and chemical properties of the native extracellular matrix. Here, we compare the mechanical properties and the degradation behavior of unmodified and modified alginate hydrogels in which cell adhesive functionality is conferred either by blending or covalently cross-linking with gelatin. Furthermore, we measure the spreading and proliferation of encapsulated osteoblast-like MG-63 cells. Alginate hydrogels covalently crosslinked with gelatin show the highest degree of cell adhesion, spreading, migration, and proliferation, as well as a faster degradation rate, and are therefore a particularly suitable material for microencapsulation.


International Journal of Biological Macromolecules | 2016

Soft-matrices based on silk fibroin and alginate for tissue engineering

Raquel Silva; Raminder Singh; Bapi Sarker; Dimitrios G. Papageorgiou; Judith A. Juhasz; Judith A. Roether; Iwona Cicha; Joachim Kaschta; Dirk W. Schubert; K. Chrissafis; Rainer Detsch; Aldo R. Boccaccini

Soft tissue regeneration requires the use of matrices that exhibit adequate mechanical properties as well as the ability to supply nutrients and oxygen, and to remove metabolic bio-products. In this work, we describe the development of hydrogels based on the blend between alginate (Alg) and silk fibroin (SF). Herein, we report two main strategies to combine cells with biomaterials: cells are either seeded onto prefabricated hydrogels films (2D), or encapsulated during hydrogel microcapsules formation (3D). Both geometries were successfully produced and characterized. FTIR results indicated a change of conformation of SF from random coil to β-sheet after hydrogel formation. The thermal degradation behavior of films and microcapsules fabricated from Alg, and Alg/SF was dependent on the hydrogel composition and on the geometry of the samples. The presence of SF caused decreased water uptake ability and affected the degradation behavior. Mechanical tests showed that addition of SF promotes an increase in storage modulus, leading to a stiffer material as compared with pure Alg (6 times higher stiffness). Moreover, the in vitro cell-material interaction on Alg/SF hydrogels of different geometries was investigated using human umbilical vein endothelial cells (HUVECs). Viability, attachment, spreading and proliferation of HUVECs were significantly increased on Alg/SF hydrogels compared to neat Alg. These findings indicate that Alg/SF hydrogel is a promising material for the biomedical applications in tissue-engineering and regeneration.


Rheologica Acta | 1996

Rheological behaviour of a filled wax system

Stefan Kurzbeck; Joachim Kaschta; Helmut Münstedt

The temperature dependent rheological behaviour of a pigment filled wax system is investigated in a cone-and-plate viscometer over a range of shear rates from 60 to 10 000 s−1. A strong influence of water adsorbed by the pigment on rheological properties of the filled system can be found. The increase of the yield stress and the viscosity at low shear rates can be related to a build-up of pigment structures due to growing water content. The flow behaviour can be described by the Casson equation as well as by the Herschel-Bulkley equation.Both formulations are compared and discussed. The Casson model is evaluated more closely by the calculation of characteristic structural parameters of the suspension which are critically discussed.

Collaboration


Dive into the Joachim Kaschta's collaboration.

Top Co-Authors

Avatar

Dirk W. Schubert

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Helmut Münstedt

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Florian J. Stadler

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar

Aldo R. Boccaccini

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Judith A. Roether

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Rainer Detsch

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Raquel Silva

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bapi Sarker

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Bastian Walter

University of Erlangen-Nuremberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge