Raquel Silva
University of Erlangen-Nuremberg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Raquel Silva.
Journal of Materials Chemistry B | 2014
Bapi Sarker; Dimitrios G. Papageorgiou; Raquel Silva; Tobias Zehnder; Farhana Gul-E-Noor; Marko Bertmer; Joachim Kaschta; K. Chrissafis; Rainer Detsch; Aldo R. Boccaccini
Microencapsulation of cells by using biodegradable hydrogels offers numerous attractive features for a variety of biomedical applications including tissue engineering. This study highlights the fabrication of microcapsules from an alginate-gelatin crosslinked hydrogel (ADA-GEL) and presents the evaluation of the physico-chemical properties of the new microcapsules which are relevant for designing suitable microcapsules for tissue engineering. Alginate di-aldehyde (ADA) was synthesized by periodate oxidation of alginate which facilitates crosslinking with gelatin through Schiffs base formation between the free amino groups of gelatin and the available aldehyde groups of ADA. Formation of Schiffs base in ADA-GEL and aldehyde groups in ADA was confirmed by FTIR and NMR spectroscopy, respectively. Thermal degradation behavior of films and microcapsules fabricated from alginate, ADA and ADA-GEL was dependent on the hydrogel composition. The gelation time of ADA-GEL was found to decrease with increasing gelatin content. The swelling ratio of ADA-GEL microcapsules of all compositions was significantly decreased, whereas the degradability was found to increase with the increase of gelatin ratio. The surface morphology of the ADA-GEL microcapsules was totally different from that of alginate and ADA microcapsules, observed by SEM. Two different buffer solutions (with and without calcium salt) have an influence on the stability of microcapsules which had a significant effect on the gelatin release profile of ADA-GEL microcapsules in these two buffer solutions.
PLOS ONE | 2014
Bapi Sarker; Raminder Singh; Raquel Silva; Judith A. Roether; Joachim Kaschta; Rainer Detsch; Dirk W. Schubert; Iwona Cicha; Aldo R. Boccaccini
Due to the relatively poor cell-material interaction of alginate hydrogel, alginate-gelatin crosslinked (ADA-GEL) hydrogel was synthesized through covalent crosslinking of alginate di-aldehyde (ADA) with gelatin that supported cell attachment, spreading and proliferation. This study highlights the evaluation of the physico-chemical properties of synthesized ADA-GEL hydrogels of different compositions compared to alginate in the form of films. Moreover, in vitro cell-material interaction on ADA-GEL hydrogels of different compositions compared to alginate was investigated by using normal human dermal fibroblasts. Viability, attachment, spreading and proliferation of fibroblasts were significantly increased on ADA-GEL hydrogels compared to alginate. Moreover, in vitro cytocompatibility of ADA-GEL hydrogels was found to be increased with increasing gelatin content. These findings indicate that ADA-GEL hydrogel is a promising material for the biomedical applications in tissue-engineering and regeneration.
Journal of Materials Chemistry B | 2014
Raquel Silva; Raminder Singh; Bapi Sarker; Dimitrios G. Papageorgiou; Judith A. Juhasz; Judith A. Roether; Iwona Cicha; Joachim Kaschta; Dirk W. Schubert; K. Chrissafis; Rainer Detsch; Aldo R. Boccaccini
Novel hybrid hydrogels based on alginate and keratin were successfully produced for the first time. The self-assembly properties of keratin, and its ability to mimic the extracellular matrix were combined with the excellent chemical and mechanical stability and biocompatibility of alginate to produce 2D and 3D hybrid hydrogels. These hybrid hydrogels were prepared using two different approaches: sonication, to obtain 2D hydrogels, and a pressure-driven extrusion technique to produce 3D hydrogels. All results indicated that the composition of the hydrogels had a significant effect on their physical properties, and that they can easily be tuned to obtain materials suitable for biological applications. The cell-material interaction was assessed through the use of human umbilical vein endothelial cells, and the results demonstrated that the alginate/keratin hybrid biomaterials supported cell attachment, spreading and proliferation. The results proved that such novel hybrid hydrogels might find applications as scaffolds for soft tissue regeneration.
International Journal of Biological Macromolecules | 2015
Bapi Sarker; Julia Rompf; Raquel Silva; Nadine Lang; Rainer Detsch; Joachim Kaschta; Ben Fabry; Aldo R. Boccaccini
Hydrogel-based biomaterials are ideal scaffolding matrices for microencapsulation, but they need to be modified to resemble the mechanical, structural and chemical properties of the native extracellular matrix. Here, we compare the mechanical properties and the degradation behavior of unmodified and modified alginate hydrogels in which cell adhesive functionality is conferred either by blending or covalently cross-linking with gelatin. Furthermore, we measure the spreading and proliferation of encapsulated osteoblast-like MG-63 cells. Alginate hydrogels covalently crosslinked with gelatin show the highest degree of cell adhesion, spreading, migration, and proliferation, as well as a faster degradation rate, and are therefore a particularly suitable material for microencapsulation.
International Journal of Biological Macromolecules | 2016
Raquel Silva; Raminder Singh; Bapi Sarker; Dimitrios G. Papageorgiou; Judith A. Juhasz; Judith A. Roether; Iwona Cicha; Joachim Kaschta; Dirk W. Schubert; K. Chrissafis; Rainer Detsch; Aldo R. Boccaccini
Soft tissue regeneration requires the use of matrices that exhibit adequate mechanical properties as well as the ability to supply nutrients and oxygen, and to remove metabolic bio-products. In this work, we describe the development of hydrogels based on the blend between alginate (Alg) and silk fibroin (SF). Herein, we report two main strategies to combine cells with biomaterials: cells are either seeded onto prefabricated hydrogels films (2D), or encapsulated during hydrogel microcapsules formation (3D). Both geometries were successfully produced and characterized. FTIR results indicated a change of conformation of SF from random coil to β-sheet after hydrogel formation. The thermal degradation behavior of films and microcapsules fabricated from Alg, and Alg/SF was dependent on the hydrogel composition and on the geometry of the samples. The presence of SF caused decreased water uptake ability and affected the degradation behavior. Mechanical tests showed that addition of SF promotes an increase in storage modulus, leading to a stiffer material as compared with pure Alg (6 times higher stiffness). Moreover, the in vitro cell-material interaction on Alg/SF hydrogels of different geometries was investigated using human umbilical vein endothelial cells (HUVECs). Viability, attachment, spreading and proliferation of HUVECs were significantly increased on Alg/SF hydrogels compared to neat Alg. These findings indicate that Alg/SF hydrogel is a promising material for the biomedical applications in tissue-engineering and regeneration.
Biofabrication | 2016
Álvaro J. Leite; Bapi Sarker; Tobias Zehnder; Raquel Silva; João F. Mano; Aldo R. Boccaccini
Alginate dialdehyde-gelatin (ADA-GEL) constructs incorporating bioactive glass nanoparticles (BGNPs) were produced by biofabrication to obtain a grid-like highly-hydrated composite. The material could induce the deposition of an apatite layer upon immersion in a biological-like environment to sustain cell attachment and proliferation. Composites were formulated with different concentrations of BGNPs synthetized from a sol-gel route, namely 0.1% and 0.5% (w/v). Strontium doped BGNPs were also used. EDS analysis suggested that the BGNPs loading promoted the growth of bone-like apatite layer on the surface when the constructs were immersed in a simulated body fluid. Moreover, the composite constructs could incorporate with high efficiency ibuprofen as a drug model. Furthermore, the biofabrication process allowed the successful incorporation of MG-63 cells into the composite material. Cells were distributed homogeneously within the hydrogel composite, and no differences were found in cell viability between ADA-GEL and the composite constructs, proving that the addition of BGNPs did not influence cell fate. Overall, the composite material showed potential for future applications in bone tissue engineering.
Journal of Biomedical Materials Research Part A | 2017
Merve Demir; Laura Ramos-Rivera; Raquel Silva; Showan N. Nazhat; Aldo R. Boccaccini
Considerable research efforts have been devoted to zein-based biomaterials for tissue engineering and other biomedical applications over the past decade. The attention given to zein-based polymers is primarily attributed to their biocompatibility and biodegradability. However, due to the relatively low mechanical properties of these polymers, numerous inorganic compounds (e.g., hydroxyapatite, calcium phosphate, bioactive glasses, natural clays) have been considered in combination with zein to create composite materials in an attempt to enhance zein mechanical properties. Inorganic phases also positively impact on the hydrophilic properties of zein matrices inducing a suitable environment for cell attachment, spreading, and proliferation. This review covers available literature on zein and zein-based composite materials, with focus on the combination of zein with commonly used inorganic fillers for tissue engineering and drug delivery applications. An overview of the most recent advances in fabrication techniques for zein-based composites is presented and key applications areas and future developments in the field are highlighted.
Journal of Biomedical Materials Research Part A | 2016
Raminder Singh; Bapi Sarker; Raquel Silva; Rainer Detsch; Barbara Dietel; Christoph Alexiou; Aldo R. Boccaccini; Iwona Cicha
Developing matrices biocompatible with vascular cells is one of the most challenging tasks in tissue engineering. Here, we compared the growth of vascular cells on different hydrogels as potential materials for bioplotting of vascular tissue. Formulations containing alginate solution (Alg, 2%, w/v) blended with protein solutions (silk fibroin, gelatin, keratin, or elastin) at 1% w/v were prepared. Human umbilical vein endothelial cells (ECs), smooth muscle cells (SMCs), and fibroblasts were cultivated on hydrogels for 7 days. Cell number and morphology was visualised using fluorescent staining at day 3 and 7. Cell metabolic activity was analysed using WST assay. Compared to pure Alg, Alg/keratin, Alg/gelatin and Alg/silk fibroin provided superb surfaces for ECs, supporting their attachment, growth, spreading and metabolic activity. SMCs showed best colonization and growth on Alg/silk fibroin and Alg/keratin hydrogels, whereas on elastin-containing hydrogels, cell clustering was observed. Fibroblasts growth was enhanced on Alg/elastin, and strongly improved on silk fibroin- and keratin-containing hydrogels. In contrast to the previous studies with alginate dialdehyde-gelatin crosslinked gels, Alg/gelatin blend hydrogels provided a less favourable scaffold for fibroblasts. Taken together, the most promising results were obtained with silk fibroin- and keratin-containing hydrogels, which supported the growth of all types of vascular cells.
PLOS ONE | 2016
Raquel Silva; Anne I. Wijtzes; Daphne van de Bongardt; Petra van de Looij-Jansen; Rienke Bannink; Hein Raat
Objectives To assess the prospective associations of physical activity behaviors and screen time with early sexual intercourse initiation (i.e., before 15 years) in a large sample of adolescents. Methods We used two waves of data from the Rotterdam Youth Monitor, a longitudinal study conducted in the Netherlands. The analysis sample consisted of 2,141 adolescents aged 12 to 14 years (mean age at baseline = 12.2 years, SD = 0.43). Physical activity (e.g., sports outside school), screen time (e.g., computer use), and early sexual intercourse initiation were assessed by means of self-report questionnaires. Logistic regression models were tested to assess the associations of physical activity behaviors and screen time (separately and simultaneously) with early sexual intercourse initiation, controlling for confounders (i.e., socio-demographics and substance use). Interaction effects with gender were tested to assess whether these associations differed significantly between boys and girls. Results The only physical activity behavior that was a significant predictor of early sexual intercourse initiation was sports club membership. Adolescent boys and girls who were members of a sports club) were more likely to have had early sex (OR = 2.17; 95% CI = 1.33, 3.56. Significant gender interaction effects indicated that boys who watched TV ≥2 hours/day (OR = 2.00; 95% CI = 1.08, 3.68) and girls who used the computer ≥2 hours/day (OR = 3.92; 95% CI = 1.76, 8.69) were also significantly more likely to have engaged in early sex. Conclusion These findings have implications for professionals in general pediatric healthcare, sexual health educators, policy makers, and parents, who should be aware of these possible prospective links between sports club membership, TV watching (for boys), and computer use (for girls), and early sexual intercourse initiation. However, continued research on determinants of adolescents’ early sexual initiation is needed to further contribute to the strategies for improving adolescents’ healthy sexual development and behaviors.
International Journal of Biological Macromolecules | 2018
Raquel Silva; Raminder Singh; Bapi Sarker; Dimitrios G. Papageorgiou; Judith A. Juhasz-Bortuzzo; Judith A. Roether; Iwona Cicha; Joachim Kaschta; Dirk W. Schubert; K. Chrissafis; Rainer Detsch; Aldo R. Boccaccini
Hydrogels from natural polymers are widely used in tissue engineering due to their unique properties, especially when regarding the cell environment and their morphological similarity to the extracellular matrix (ECM) of native tissues. In this study, we describe the production and characterization of novel hybrid hydrogels composed of alginate blended with elastin from bovine neck ligament. The properties of elastin as a component of the native ECM were combined with the excellent chemical and mechanical stability as well as biocompatibility of alginate to produce two hybrid hydrogels geometries, namely 2D films obtained using sonication treatment and 3D microcapsules produced by pressure-driven extrusion. The resulting blend hydrogels were submitted to an extensive physico-chemical characterization. Furthermore, the biological compatibility of these materials was assessed using normal human dermal fibroblasts, indicating the suitability of this blend for soft tissue engineering.