Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joana Coulon is active.

Publication


Featured researches published by Joana Coulon.


International Journal of Food Microbiology | 2015

Increase of fruity aroma during mixed T. delbrueckii/S. cerevisiae wine fermentation is linked to specific esters enhancement.

Philippe Renault; Joana Coulon; Gilles de Revel; Jean-Christophe Barbe; Marina Bely

The aim of this work was to study ester formation and the aromatic impact of Torulaspora delbrueckii when used in association with Saccharomyces cerevisiae during the alcoholic fermentation of must. In order to evaluate the influence of the inoculation procedure, sequential and simultaneous mixed cultures were carried out and compared to pure cultures of T. delbrueckii and S. cerevisiae. Our results showed that mixed inoculations allowed the increase, in comparison to S. cerevisiae pure culture, of some esters specifically produced by T. delbrueckii and significantly correlated to the maximal T. delbrueckii population reached in mixed cultures. Thus, ethyl propanoate, ethyl isobutanoate and ethyl dihydrocinnamate were considered as activity markers of T. delbrueckii. On the other hand, isobutyl acetate and isoamyl acetate concentrations were systematically increased during mixed inoculations although not correlated with the development of either species but were rather due to positive interactions between these species. Favoring T. delbrueckii development when performing sequential inoculation enhanced the concentration of esters linked to T. delbrueckii activity. On the contrary, simultaneous inoculation restricted the growth of T. delbrueckii, limiting the production of its activity markers, but involved a very important production of numerous esters due to more important positive interactions between species. These results suggest that the ester concentrations enhancement via interactions during mixed modalities was due to S. cerevisiae production in response to the presence of T. delbrueckii. Finally, sensory analyses showed that mixed inoculations between T. delbrueckii and S. cerevisiae allowed to enhance the complexity and fruity notes of wine in comparison to S. cerevisiae pure culture. Furthermore, the higher levels of ethyl propanoate, ethyl isobutanoate, ethyl dihydrocinnamate and isobutyl acetate in mixed wines were found responsible for the increase of fruitiness and complexity.


PLOS ONE | 2014

Exopolysaccharide (EPS) Synthesis by Oenococcus oeni: From Genes to Phenotypes

Maria Dimopoulou; Marlène Vuillemin; Hugo Campbell-Sills; Patricia Ballestra; Cécile Miot-Sertier; Marion Favier; Joana Coulon; Virginie Moine; Thierry Doco; Maryline Roques; Pascale Williams; Mélina Petrel; Etienne Gontier; Claire Moulis; Magali Remaud-Siméon; Marguerite Dols-Lafargue

Oenococcus oeni is the bacterial species which drives malolactic fermentation in wine. The analysis of 50 genomic sequences of O. oeni (14 already available and 36 newly sequenced ones) provided an inventory of the genes potentially involved in exopolysaccharide (EPS) biosynthesis. The loci identified are: two gene clusters named eps1 and eps2, three isolated glycoside-hydrolase genes named dsrO, dsrV and levO, and three isolated glycosyltransferase genes named gtf, it3, it4. The isolated genes were present or absent depending on the strain and the eps gene clusters composition diverged from one strain to another. The soluble and capsular EPS production capacity of several strains was examined after growth in different culture media and the EPS structure was determined. Genotype to phenotype correlations showed that several EPS biosynthetic pathways were active and complementary in O. oeni. Can be distinguished: (i) a Wzy -dependent synthetic pathway, allowing the production of heteropolysaccharides made of glucose, galactose and rhamnose, mainly in a capsular form, (ii) a glucan synthase pathway (Gtf), involved in β-glucan synthesis in a free and a cell-associated form, giving a ropy phenotype to growth media and (iii) homopolysaccharide synthesis from sucrose (α-glucan or β-fructan) by glycoside-hydrolases of the GH70 and GH68 families. The eps gene distribution on the phylogenetic tree was examined. Fifty out of 50 studied genomes possessed several genes dedicated to EPS metabolism. This suggests that these polymers are important for the adaptation of O. oeni to its specific ecological niche, wine and possibly contribute to the technological performance of malolactic starters.


Frontiers in Microbiology | 2016

Enhanced 3-Sulfanylhexan-1-ol Production in Sequential Mixed Fermentation with Torulaspora delbrueckii/Saccharomyces cerevisiae Reveals a Situation of Synergistic Interaction between Two Industrial Strains.

Philippe Renault; Joana Coulon; Virginie Moine; Cécile Thibon; Marina Bely

The aim of this work was to study the volatile thiol productions of two industrial strains of Torulaspora delbrueckii and Saccharomyces cerevisiae during alcoholic fermentation (AF) of Sauvignon Blanc must. In order to evaluate the influence of the inoculation procedure, sequential and simultaneous mixed cultures were carried out and compared to pure cultures of T. delbrueckii and S. cerevisiae. The results confirmed the inability of T. delbrueckii to release 4-methyl-4-sulfanylpentan-2-one (4MSP) and its low capacity to produce 3-sulfanylhexyl acetate (3SHA), as already reported in previous studies. A synergistic interaction was observed between the two species, resulting in higher levels of 3SH (3-sulfanylhexan-1-ol) and its acetate when S. cerevisiae was inoculated 24 h after T. delbrueckii, compared to the pure cultures. To elucidate the nature of the interactions between these two species, the yeast population kinetics were examined and monitored, as well as the production of 3SH, its acetate and their related non-odorous precursors: Glut-3SH (glutathionylated conjugate precursor) and Cys-3SH (cysteinylated conjugate precursor). For the first time, it was suggested that, unlike S. cerevisiae, which is able to metabolize the two precursor forms, T. delbrueckii was only able to metabolize the glutathionylated precursor. Consequently, the presence of T. delbrueckii during mixed fermentation led to an increase in Glut-3SH degradation and Cys-3SH production. This overproduction was dependent on the T. delbrueckii biomass. In sequential culture, thus favoring T. delbrueckii development, the higher availability of Cys-3SH throughout AF resulted in more abundant 3SH and 3SHA production by S. cerevisiae.


Journal of Applied Microbiology | 2010

Brettanomyces bruxellensis evolution and volatile phenols production in red wines during storage in bottles

Joana Coulon; Marie-Claire Perello; Aline Lonvaud-Funel; G. de Revel; V. Renouf

Aims:  The presence of Brettanomyces bruxellensis is an important issue during winemaking because of its volatile phenols production capacities. The aim of this study is to provide information on the ability of residual B. bruxellensis populations to multiply and spoil finished wines during storage in bottles.


International Journal of Food Microbiology | 2012

Lysozyme resistance of the ropy strain Pediococcus parvulus IOEB 8801 is correlated with beta-glucan accumulation around the cell

Joana Coulon; Anne Houlès; Maria Dimopoulou; Julie Maupeu; Marguerite Dols-Lafargue

Lactic acid bacteria (LAB) are often exploited to carry out malolactic fermentation in wine. However, a few specific LAB strains and, more precisely, some Pediococcus parvulus strains synthesize a β-glucan, which can be deleterious to wine quality as it confers a ropy texture to the wine that can no longer be commercialized. Although molecular methods exist to detect these unwanted microorganisms, ropy Pediococcus still remain difficult to remove from wine, because of their natural resistance to traditional wine stabilizing treatments. In this work, we show that ropy P. parvulus are resistant to lysozyme. We clearly demonstrate that this resistance may be ascribed to the presence of the β-glucan that forms around the cell a protective barrier against anti-bacteria agents. Moreover, this resistance increases during bacterial growth. We show that using lysozyme with β-glucanase can strongly improve the treatment against ropy strains, in model media as well as red and white wine based media. This work not only brings potential solutions to the wine industry, but also opens interesting perspectives for studying β-glucan producing bacteria which are widespread in the food industry.


International Journal of Food Microbiology | 2014

Oenological prefermentation practices strongly impact yeast population dynamics and alcoholic fermentation kinetics in Chardonnay grape must.

Warren Albertin; Cécile Miot-Sertier; Marina Bely; Philippe Marullo; Joana Coulon; Virginie Moine; Benoit Colonna-Ceccaldi; Isabelle Masneuf-Pomarède

Yeast species of Hanseniaspora and Candida genus are predominant during the early stages of winemaking, while species of Metschnikowia, Pichia, Zygoascus, Issatchenkia, Torulaspora and other genera are present at lower population levels. The impact of common oenological practices on yeast dynamics during the prefermentative stage and the early stage of alcoholic fermentation (AF) remains elusive. In this work, the effect of four prefermentative oenological practices (clarification degree, temperature, sulphite and starter yeast addition) on yeast dynamics was evaluated in a Chardonnay grape must. The growth curves of four genus or species, namely Saccharomyces spp., Hanseniaspora spp., Candida zemplinina and Torulaspora delbrueckii, were followed by quantitative PCR. The fermentation kinetics were also recorded, as well as the production of acetic acid. Variance analysis allowed determining the effect of each practice and their interaction factors, as well as their relative importance on yeast dynamics and fermentation kinetics. Our experimental design showed that the population dynamics of the four species were differently impacted by the oenological practices, with some species being more sensitive than others to the clarification degree (C. zemplinina), sulphite addition (Saccharomyces spp.), starter yeast inoculation (Hanseniaspora spp.) or prefermentation temperature (T. delbrueckii). Significant interaction effects between practices were revealed, highlighting the interest of experimental design allowing interaction analysis, as some factors may buffer the effect of other ones. Hanseniaspora genus showed atypical behaviour: growth dynamics showed a decrease during AF that we interpreted as early cellular lysis. In conclusion, this study provides new insights on the impact of common oenological practices on the dynamics of non-Saccharomyces yeast that will be useful for a better management of mixed fermentation between S. cerevisiae and non-Saccharomyces yeasts.


Frontiers in Microbiology | 2016

Hanseniaspora uvarum from Winemaking Environments Show Spatial and Temporal Genetic Clustering

Warren Albertin; Mathabatha E. Setati; Cécile Miot-Sertier; Talitha T. Mostert; Benoit Colonna-Ceccaldi; Joana Coulon; Patrick Girard; Virginie Moine; Myriam Pillet; Franck Salin; Marina Bely; Benoit Divol; Isabelle Masneuf-Pomarède

Hanseniaspora uvarum is one of the most abundant yeast species found on grapes and in grape must, at least before the onset of alcoholic fermentation (AF) which is usually performed by Saccharomyces species. The aim of this study was to characterize the genetic and phenotypic variability within the H. uvarum species. One hundred and fifteen strains isolated from winemaking environments in different geographical origins were analyzed using 11 microsatellite markers and a subset of 47 strains were analyzed by AFLP. H. uvarum isolates clustered mainly on the basis of their geographical localization as revealed by microsatellites. In addition, a strong clustering based on year of isolation was evidenced, indicating that the genetic diversity of H. uvarum isolates was related to both spatial and temporal variations. Conversely, clustering analysis based on AFLP data provided a different picture with groups showing no particular characteristics, but provided higher strain discrimination. This result indicated that AFLP approaches are inadequate to establish the genetic relationship between individuals, but allowed good strain discrimination. At the phenotypic level, several extracellular enzymatic activities of enological relevance (pectinase, chitinase, protease, β-glucosidase) were measured but showed low diversity. The impact of environmental factors of enological interest (temperature, anaerobia, and copper addition) on growth was also assessed and showed poor variation. Altogether, this work provided both new analytical tool (microsatellites) and new insights into the genetic and phenotypic diversity of H. uvarum, a yeast species that has previously been identified as a potential candidate for co-inoculation in grape must, but whose intraspecific variability had never been fully assessed.


Applied Microbiology and Biotechnology | 2017

Combined effect of the Saccharomyces cerevisiae lag phase and the non- Saccharomyces consortium to enhance wine fruitiness and complexity

Warren Albertin; Adrien Zimmer; Cécile Miot-Sertier; Margaux Bernard; Joana Coulon; Virginie Moine; Benoit Colonna-Ceccaldi; Marina Bely; Philippe Marullo; Isabelle Masneuf-Pomarède

Non-Saccharomyces (NS) species that are either naturally present in grape must or added in mixed fermentation with S. cerevisiae may impact the wine’s chemical composition and sensory properties. NS yeasts are prevailing during prefermentation and early stages of alcoholic fermentation. However, obtaining the correct balance between S. cerevisiae and NS species is still a critical issue: if S. cerevisiae outcompetes the non-Saccharomyces, it may minimize their impact, while conversely if NS take over S. cerevisiae, it may result in stuck or sluggish fermentations. Here, we propose an original strategy to promote the non-Saccharomyces consortium during the prefermentation stage while securing fermentation completion: the use of a long lag phase S. cerevisiae. Various fermentations in a Sauvignon Blanc with near isogenic S. cerevisiae displaying short or long lag phase were compared. Fermentations were performed with or without a consortium of five non-Saccharomyces yeasts (Hanseniaspora uvarum, Candida zemplinina, Metschnikowia spp., Torulaspora delbrueckii, and Pichia kluyveri), mimicking the composition of natural NS community in grape must. The sensorial analysis highlighted the positive impact of the long lag phase on the wine fruitiness and complexity. Surprisingly, the presence of NS modified only marginally the wine composition but significantly impacted the lag phase of S. cerevisiae. The underlying mechanisms are still unclear, but it is the first time that a study suggests that the wine composition can be affected by the lag phase duration per se. Further experiments should address the suitability of the use of long lag phase S. cerevisiae in winemaking.


Journal of Microbiological Methods | 2015

A new method for monitoring the extracellular proteolytic activity of wine yeasts during alcoholic fermentation of grape must

Laura Chasseriaud; Cécile Miot-Sertier; Joana Coulon; Nerea Iturmendi; Virginie Moine; Warren Albertin; Marina Bely

The existing methods for testing proteolytic activity are time consuming, quite difficult to perform, and do not allow real-time monitoring. Proteases have attracted considerable interest in winemaking and some yeast species naturally present in grape must, such as Metschnikowia pulcherrima, are capable of expressing this activity. In this study, a new test is proposed for measuring proteolytic activity directly in fermenting grape must, using azocasein, a chromogenic substrate. Several yeast strains were tested and differences in proteolytic activity were observed. Moreover, analysis of grape must proteins in wines revealed that protease secreted by Metschnikowia strains may be active against wine proteins.


Applied Microbiology and Biotechnology | 2018

New oenological practice to promote non- Saccharomyces species of interest: saturating grape juice with carbon dioxide

Laura Chasseriaud; Joana Coulon; Philippe Marullo; Warren Albertin; Marina Bely

Non-Saccharomyces yeast species, naturally found in grape must, may impact wine quality positively or negatively. In this study, a mixture of five non-Saccharomyces species (Torulaspora delbrueckii, Metschnikowia spp., Starmerella bacillaris (formerly called Candida zemplinina), Hanseniaspora uvarum, Pichia kluyveri), mimicking the composition of the natural non-Saccharomyces community found in grape must, was used for alcoholic fermentation. The impact of CO2 saturation of the grape juice was studied first on this mixture alone, and then in the presence of Saccharomyces cerevisiae. Two isogenic strains of this species were used: the first with a short and the second a long fermentation lag phase. This study demonstrated that saturating grape juice with CO2 had interesting potential as an oenological technique, inhibiting undesirable species (S. bacillaris and H. uvarum) and stimulating non-Saccharomyces of interest (T. delbrueckii and P. kluyveri). This stimulating effect was particularly marked when CO2 saturation was associated with the presence of S. cerevisiae with long fermentation lag phase. The direct consequence of this association was an enhancement of 3-SH levels in the resulting wine.

Collaboration


Dive into the Joana Coulon's collaboration.

Top Co-Authors

Avatar

Marina Bely

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Cécile Miot-Sertier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philippe Marullo

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge