Johanna Moll
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Johanna Moll.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Anne-Kristin Kaster; Johanna Moll; Kristian Parey; Rudolf K. Thauer
In methanogenic archaea growing on H2 and CO2 the first step in methanogenesis is the ferredoxin-dependent endergonic reduction of CO2 with H2 to formylmethanofuran and the last step is the exergonic reduction of the heterodisulfide CoM-S-S-CoB with H2 to coenzyme M (CoM-SH) and coenzyme B (CoB-SH). We recently proposed that in hydrogenotrophic methanogens the two reactions are energetically coupled via the cytoplasmic MvhADG/HdrABC complex. It is reported here that the purified complex from Methanothermobacter marburgensis catalyzes the CoM-S-S-CoB-dependent reduction of ferredoxin with H2. Per mole CoM-S-S-CoB added, 1 mol of ferredoxin (Fd) was reduced, indicating an electron bifurcation coupling mechanism: This stoichiometry of coupling is consistent with an ATP gain per mole methane from 4 H2 and CO2 of near 0.5 deduced from an H2-threshold concentration of 8 Pa and a growth yield of up to 3 g/mol methane.
Journal of Bacteriology | 2010
Shuning Wang; Haiyan Huang; Johanna Moll; Rudolf K. Thauer
It was recently found that the cytoplasmic butyryl-coenzyme A (butyryl-CoA) dehydrogenase-EtfAB complex from Clostridium kluyveri couples the exergonic reduction of crotonyl-CoA to butyryl-CoA with NADH and the endergonic reduction of ferredoxin with NADH via flavin-based electron bifurcation. We report here on a second cytoplasmic enzyme complex in C. kluyveri capable of energetic coupling via this novel mechanism. It was found that the purified iron-sulfur flavoprotein complex NfnAB couples the exergonic reduction of NADP+ with reduced ferredoxin (Fdred) and the endergonic reduction of NADP+ with NADH in a reversible reaction: Fdred2-+NADH+2 NADP++H+=Fdox+NAD++2 NADPH. The role of this energy-converting enzyme complex in the ethanol-acetate fermentation of C. kluyveri is discussed.
Journal of Bacteriology | 2012
Haiyan Huang; Shuning Wang; Johanna Moll; Rudolf K. Thauer
Moorella thermoacetica ferments glucose to three acetic acids. In the oxidative part of the fermentation, the hexose is converted to 2 acetic acids and 2 CO(2) molecules with the formation of 2 NADH and 2 reduced ferredoxin (Fd(red)(2-)) molecules. In the reductive part, 2 CO(2) molecules are reduced to acetic acid, consuming the 8 reducing equivalents generated in the oxidative part. An open question is how the two parts are electronically connected, since two of the four oxidoreductases involved in acetogenesis from CO(2) are NADP specific rather than NAD specific. We report here that the 2 NADPH molecules required for CO(2) reduction to acetic acid are generated by the reduction of 2 NADP(+) molecules with 1 NADH and 1 Fd(red)(2-) catalyzed by the electron-bifurcating NADH-dependent reduced ferredoxin:NADP(+) oxidoreductase (NfnAB). The cytoplasmic iron-sulfur flavoprotein was heterologously produced in Escherichia coli, purified, and characterized. The purified enzyme was composed of 30-kDa (NfnA) and 50-kDa (NfnB) subunits in a 1-to-1 stoichiometry. NfnA harbors a [2Fe2S] cluster and flavin adenine dinucleotide (FAD), and NfnB harbors two [4Fe4S] clusters and FAD. M. thermoacetica contains a second electron-bifurcating enzyme. Cell extracts catalyzed the coupled reduction of NAD(+) and Fd with 2 H(2) molecules. The specific activity of this cytoplasmic enzyme was 3-fold higher in H(2)-CO(2)-grown cells than in glucose-grown cells. The function of this electron-bifurcating hydrogenase is not yet clear, since H(2)-CO(2)-grown cells additionally contain high specific activities of an NADP(+)-dependent hydrogenase that catalyzes the reduction of NADP(+) with H(2). This activity is hardly detectable in glucose-grown cells.
Biochemistry | 2009
Katharina Ceh; Ulrike Demmer; Eberhard Warkentin; Johanna Moll; Rudolf K. Thauer; Seigo Shima; Ulrich Ermler
F(420)-dependent methylenetetrahydromethanopterin (methylene-H(4)MPT) dehydrogenase (Mtd) of Methanopyrus kandleri is an enzyme of the methanogenic energy metabolism that catalyzes the reversible hydride transfer between methenyl-H(4)MPT(+) and methylene-H(4)MPT using coenzyme F(420) as hydride carrier. We determined the structures of the Mtd-methylene-H(4)MPT, Mtd-methenyl-H(4)MPT(+), and the Mtd-methenyl-H(4)MPT(+)-F(420)H(2) complexes at 2.1, 2.0, and 1.8 A resolution, respectively. The pterin-imidazolidine-phenyl ring system is present in a new extended but not planar conformation which is virtually identical in methenyl-H(4)MPT(+) and methylene-H(4)MPT at the current resolution. Both substrates methenyl-H(4)MPT(+) and F(420)H(2) bind in a face to face arrangement to an active site cleft, thereby ensuring a direct hydride transfer between their C14a and C5 atoms, respectively. The polypeptide scaffold does not reveal any significant conformational change upon binding of the bulky substrates but in turn changes the conformations of the substrate rings either to avoid clashes between certain ring atoms or to adjust the rings involved in hydride transfer for providing an optimal catalytic efficiency.
Environmental Microbiology | 2014
Hisaya Kojima; Johanna Moll; Jörg Kahnt; Manabu Fukui; Seigo Shima
Consortia of anaerobic methanotrophic (ANME) archaea and delta-proteobacteria anaerobically oxidize methane coupled to sulfate reduction to sulfide. The metagenome of ANME-1 archaea contains genes homologous to genes otherwise only found in methanogenic archaea, and transcription of some of these genes in ANME-1 cells has been shown. We now have heterologously expressed three of these genes in Escherichia coli, namely those homologous to genes for formylmethanofuran : tetrahydromethanopterin formyltransferase, methenyltetrahydromethanopterin cyclohydrolase (Mch) and coenzyme F420 -dependent methylenetetrahydromethanopterin dehydrogenase (Mtd), and have characterized the overproduced enzymes with respect to their coenzyme specificity and other catalytic properties. The three enzymes from ANME-1 were found to catalyse the same reactions and with similar specific activities using identical coenzymes as the respective enzymes in methanogenic archaea, the apparent Km for their substrates being in the same concentration range. The results support the proposal that anaerobic oxidation of methane to CO₂in ANME involves the same enzymes and coenzymes as CO₂reduction to methane in methanogenic archaea. Interestingly, the activity of Mch and the stability of Mtd from ANME-1 were found to be dependent on the presence of 0.5-1.0 M potassium phosphate, which suggested that ANME-1 archaea contain high concentrations of lyotropic salts, presumably as compatible solutes.
Biochemistry | 2012
Vikrant Upadhyay; Ulrike Demmer; Eberhard Warkentin; Johanna Moll; Seigo Shima; Ulrich Ermler
Methenyltetrahydromethanopterin (methenyl-H(4)MPT(+)) cyclohydrolase (Mch) catalyzes the interconversion of methenyl-H(4)MPT(+) and formyl-H(4)MPT in the one-carbon energy metabolism of methanogenic, methanotrophic, and sulfate-reducing archaea and of methylotrophic bacteria. To understand the catalytic mechanism of this reaction, we kinetically characterized site-specific variants of Mch from Archaeoglobus fulgidus (aMch) and determined the X-ray structures of the substrate-free aMch(E186Q), the aMch:H(4)MPT complex, and the aMch(E186Q):formyl-H(4)MPT complex. (Formyl-)H(4)MPT is embedded inside a largely preformed, interdomain pocket of the homotrimeric enzyme with the pterin and benzyl rings being oriented nearly perpendicular to each other. The active site is primarily built up by the segment 93:95, Arg183 and Glu186 that either interact with the catalytic water attacking methenyl-H(4)MPT(+) or with the formyl oxygen of formyl-H(4)MPT. The catalytic function of the strictly conserved Arg183 and Glu186 was substantiated by the low enzymatic activities of the E186A, E186D, E186N, E186Q, R183A, R183Q, R183E, R183K, and R183E-E186Q variants. Glu186 most likely acts as a general base. Arg183 decisively influences the pK(a) value of Glu186 and the proposed catalytic water mainly by its positive charge. In addition, Glu186 appears to be also responsible for product specificity by donating a proton to the directly neighbored N(10) tertiary amine of H(4)MPT. Thus, N(10) becomes a better leaving group than N(5) which implies the generation of N(5)-formyl-H(4)MPT. For comparison, methenyltetrahydrofolate (H(4)F) cyclohydrolase produces N(10)-formyl-H(4)F in an analogous reaction. An enzymatic mechanism of Mch is postulated and compared with that of other cyclohydrolases.
Journal of Bacteriology | 2015
Shuning Wang; Haiyan Huang; Johanna Moll; Rudolf K. Thauer
Volume 192, no. 19, pages [5115–5123][1], 2010. Page 5115: The affiliation line should read as given above. [1]: /lookup/doi/10.1128/JB.00612-10
Archives of Microbiology | 1980
Peter Schnheit; Johanna Moll; Rudolf K. Thauer
Angewandte Chemie | 2009
Takeshi Hiromoto; Eberhard Warkentin; Johanna Moll; Ulrich Ermler; Seigo Shima
Journal of Molecular Biology | 2014
Stella Vitt; Kesen Ma; Eberhard Warkentin; Johanna Moll; Antonio J. Pierik; Seigo Shima; Ulrich Ermler