John Nicol
University of Reading
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John Nicol.
Bulletin of the American Meteorological Society | 2007
K. A. Browning; Alan M. Blyth; Peter A. Clark; U. Corsmeier; Cyril J. Morcrette; Judith L. Agnew; Sue P. Ballard; Dave Bamber; Christian Barthlott; Lindsay J. Bennett; Karl M. Beswick; Mark Bitter; K. E. Bozier; Barbara J. Brooks; C. G. Collier; Fay Davies; Bernhard Deny; Mark Dixon; Thomas Feuerle; Richard M. Forbes; Catherine Gaffard; Malcolm D. Gray; R. Hankers; Tim J. Hewison; N. Kalthoff; S. Khodayar; M. Kohler; C. Kottmeier; Stephan Kraut; M. Kunz
The Convective Storm Initiation Project (CSIP) is an international project to understand precisely where, when, and how convective clouds form and develop into showers in the mainly maritime environment of southern England. A major aim of CSIP is to compare the results of the very high resolution Met Office weather forecasting model with detailed observations of the early stages of convective clouds and to use the newly gained understanding to improve the predictions of the model. A large array of ground-based instruments plus two instrumented aircraft, from the U.K. National Centre for Atmospheric Science (NCAS) and the German Institute for Meteorology and Climate Research (IMK), Karlsruhe, were deployed in southern England, over an area centered on the meteorological radars at Chilbolton, during the summers of 2004 and 2005. In addition to a variety ofground-based remote-sensing instruments, numerous rawinsondes were released at one- to two-hourly intervals from six closely spaced sites. The Met Office weather radar network and Meteosat satellite imagery were used to provide context for the observations made by the instruments deployed during CSIP. This article presents an overview of the CSIP field campaign and examples from CSIP of the types of convective initiation phenomena that are typical in the United Kingdom. It shows the way in which certain kinds of observational data are able to reveal these phenomena and gives an explanation of how the analyses of data from the field campaign will be used in the development of an improved very high resolution NWP model for operational use.
Bulletin of the American Meteorological Society | 2015
G. Vaughan; John Methven; Daniel C. Anderson; Bogdan Antonescu; Laura Baker; T. P. Baker; Sue P. Ballard; Keith N. Bower; P. R. A. Brown; Jeffrey M. Chagnon; T. W. Choularton; J. Chylik; Paul Connolly; Peter A. Cook; Richard Cotton; J. Crosier; Christopher Dearden; J. R. Dorsey; Thomas H. A. Frame; Martin Gallagher; Michael Goodliff; Suzanne L. Gray; Ben Harvey; Peter Knippertz; Humphrey W. Lean; D. Li; Gary Lloyd; O. Martinez Alvarado; John Nicol; Jesse Norris
AbstractThe Diabatic Influences on Mesoscale Structures in Extratropical Storms (DIAMET) project aims to improve forecasts of high-impact weather in extratropical cyclones through field measurements, high-resolution numerical modeling, and improved design of ensemble forecasting and data assimilation systems. This article introduces DIAMET and presents some of the first results. Four field campaigns were conducted by the project, one of which, in late 2011, coincided with an exceptionally stormy period marked by an unusually strong, zonal North Atlantic jet stream and a succession of severe windstorms in northwest Europe. As a result, December 2011 had the highest monthly North Atlantic Oscillation index (2.52) of any December in the last 60 years. Detailed observations of several of these storms were gathered using the U.K.’s BAe 146 research aircraft and extensive ground-based measurements. As an example of the results obtained during the campaign, observations are presented of Extratropical Cyclone Fri...
Bulletin of the American Meteorological Society | 2015
Thorwald H. M. Stein; Robin J. Hogan; Peter A. Clark; Carol Halliwell; Kirsty E. Hanley; Humphrey W. Lean; John Nicol; R. S. Plant
Abstract A new frontier in weather forecasting is emerging by operational forecast models now being run at convection-permitting resolutions at many national weather services. However, this is not a panacea; significant systematic errors remain in the character of convective storms and rainfall distributions. The Dynamical and Microphysical Evolution of Convective Storms (DYMECS) project is taking a fundamentally new approach to evaluate and improve such models: rather than relying on a limited number of cases, which may not be representative, the authors have gathered a large database of 3D storm structures on 40 convective days using the Chilbolton radar in southern England. They have related these structures to storm life cycles derived by tracking features in the rainfall from the U.K. radar network and compared them statistically to storm structures in the Met Office model, which they ran at horizontal grid length between 1.5 km and 100 m, including simulations with different subgrid mixing length. T...
Monthly Weather Review | 2007
Cyril J. Morcrette; Humphrey W. Lean; K. A. Browning; John Nicol; Nigel Roberts; Peter A. Clark; Andrew Russell; Alan M. Blyth
Abstract An isolated thunderstorm formed in the southern United Kingdom on 15 June 2005 and moved through the area where a large number of observational instruments were deployed as part of the Convective Storm Initiation Project. Earlier, a convergence line had formed downstream of Devon in the southwest of the United Kingdom in a southwesterly airflow, along which a series of light showers had formed. The depth of these showers was limited by a capping inversion, or lid, at around 2.5 km. The deep thunderstorm convection developed from one of these showers when the convection broke through the lid and ascended up to the next inversion, associated with a tropopause fold at around 6 km. A series of clear-air reflectivity RHIs are used to map the height of the capping inversion and its lifting resulting from the ascent along the convergence line. The origins of the lid are tracked back to some descent from the midtroposphere along dry adiabats. The strength of the lid was weaker along a northwest-to-southe...
Bulletin of the American Meteorological Society | 2016
David Leon; Jeffrey R. French; Sonia Lasher-Trapp; Alan M. Blyth; Steven J. Abel; Susan P. Ballard; Andrew I. Barrett; Lindsay J. Bennett; Keith N. Bower; Barbara J. Brooks; P. R. A. Brown; Cristina Charlton-Perez; Thomas Choularton; Peter A. Clark; C. G. Collier; Jonathan Crosier; Zhiqiang Cui; Seonaid R. A. Dey; David Dufton; Chloe Eagle; M. Flynn; Martin Gallagher; Carol Halliwell; Kirsty E. Hanley; Lee Hawkness-Smith; Y. Huang; Graeme Kelly; Malcolm Kitchen; Alexei Korolev; Humphrey W. Lean
AbstractThe Convective Precipitation Experiment (COPE) was a joint U.K.–U.S. field campaign held during the summer of 2013 in the southwest peninsula of England, designed to study convective clouds that produce heavy rain leading to flash floods. The clouds form along convergence lines that develop regularly as a result of the topography. Major flash floods have occurred in the past, most famously at Boscastle in 2004. It has been suggested that much of the rain was produced by warm rain processes, similar to some flash floods that have occurred in the United States. The overarching goal of COPE is to improve quantitative convective precipitation forecasting by understanding the interactions of the cloud microphysics and dynamics and thereby to improve numerical weather prediction (NWP) model skill for forecasts of flash floods. Two research aircraft, the University of Wyoming King Air and the U.K. BAe 146, obtained detailed in situ and remote sensing measurements in, around, and below storms on several d...
Monthly Weather Review | 2014
Thorwald H. M. Stein; Robin J. Hogan; Kirsty E. Hanley; John Nicol; Humphrey W. Lean; R. S. Plant; Peter A. Clark; Carol Halliwell
AbstractA set of high-resolution radar observations of convective storms has been collected to evaluate such storms in the Met Office Unified Model during the Dynamical and Microphysical Evolution of Convective Storms (DYMECS) project. The 3-GHz Chilbolton Advanced Meteorological Radar was set up with a scan-scheduling algorithm to automatically track convective storms identified in real time from the operational rainfall radar network. More than 1000 storm observations gathered over 15 days in 2011 and 2012 are used to evaluate the model under various synoptic conditions supporting convection. In terms of the detailed three-dimensional morphology, storms in the 1500-m grid length simulations are shown to produce horizontal structures a factor of 1.5–2 wider compared to radar observations. A set of nested model runs at grid lengths down to 100 m show that the models converge in terms of storm width, but the storm structures in the simulations with the smallest grid lengths are too narrow and too intense c...
Geophysical Research Letters | 2015
Thorwald H. M. Stein; C. D. Westbrook; John Nicol
Radar reflectivity measurements from three different wavelengths are used to retrieve information about the shape of aggregate snowflakes in deep stratiform ice clouds. Dual-wavelength ratios are calculated for different shape models and compared to observations at 3, 35, and 94 GHz. It is demonstrated that many scattering models, including spherical and spheroidal models, do not adequately describe the aggregate snowflakes that are observed. The observations are consistent with fractal aggregate geometries generated by a physically based aggregation model. It is demonstrated that the fractal dimension of large aggregates can be inferred directly from the radar data. Fractal dimensions close to 2 are retrieved, consistent with previous theoretical models and in situ observations.
Journal of Atmospheric and Oceanic Technology | 2013
John Nicol; Anthony J. Illingworth
AbstractRadar refractivity retrievals have the potential to accurately capture near-surface humidity fields from the phase change of ground clutter returns. In practice, phase changes are very noisy and the required smoothing will diminish large radial phase change gradients, leading to severe underestimates of large refractivity changes (ΔN). To mitigate this, the mean refractivity change over the field (〈ΔN〉field) must be subtracted prior to smoothing. However, both observations and simulations indicate that highly correlated returns (e.g., when single targets straddle neighboring gates) result in underestimates of 〈ΔN〉field when pulse-pair processing is used. This may contribute to reported differences of up to 30 N units between surface observations and retrievals. This effect can be avoided if 〈ΔN〉field is estimated using a linear least squares fit to azimuthally averaged phase changes. Nevertheless, subsequent smoothing of the phase changes will still tend to diminish the all-important spatial pertu...
Meteorological Applications | 2003
John Nicol; Geoffrey L. Austin
A new method of constraining divergent attenuation corrections for weather radar systems is presented. This was motivated by the need for reliable attenuation corrections when making quantitative precipitation estimates using a small, mobile X-band radar at short range. The approach is suitable for systems requiring attenuation correction in real-time and requires no auxiliary data. An outline of the literature on attenuation and its correction for single-polarisation weather radar is presented. The traditional form of correction is known to be problematic due to the divergence, which may occur in its estimation. The form of constraint presented is based on the representation of attenuation correction originally derived for space-borne radar configurations. This method determines when divergent estimates will occur and allows a more realistic application of the constrained correction. Examples of attenuation correction applied to X-band radar observations in comparison with ground clutter returns are presented, showing good agreement and hence good absolute calibration. Selected profiles are then used to determine the influence of measurement errors on attenuation estimation in the context of this representation. The paper concludes with a discussion of the practical limitations and considerations in applying an attenuation correction to quantitative weather radar rainfall estimates. 1. Background Attenuation due to intervening hydrometeors is known to be an inherent limitation at short radar wavelengths, while the contribution due to atmospheric gases is negligible. Atlas & Banks (1951) recognised the effects of attenuation at ‘wavelengths less than about 7 cm’ on measured reflectivity patterns and demonstrated the large distortions possible, especially at X-band wavelengths. The derivation of an equation for the rain rate profile as a function of the radar returned power at attenuating wavelengths was initially given by Hitschfeld & Bordan (1954). They emphasised ‘the difficulties associated with quantitative work at the shorter wavelengths’ owing to the instability of the solution and in particular the strong sensitivity to radar calibration errors. These papers contributed to the abandonment of the X-band wavelength for radar applications in meteorology during the 1960s, as preference was given to longer wavelengths. S-band wavelengths (∼10 cm), for example, have the definite advantage in that they are almost immune from the effects of attenuation by rainfall. However, this comes at a high price because the antenna of S-band radar must be much larger and the transmitted power much higher, to retain a reasonable resolution and sensitivity. Interest in the use of attenuating wavelengths was renewed in the 1980s with the launching of spaceborne (TRMM, BEST)
Journal of Atmospheric and Oceanic Technology | 2013
John Nicol; Anthony J. Illingworth; T. Darlington; M. Kitchen
AbstractRadar refractivity retrievals can capture near-surface humidity changes, but noisy phase changes of the ground clutter returns limit the accuracy for both klystron- and magnetron-based systems. Observations with a C-band (5.6 cm) magnetron weather radar indicate that the correction for phase changes introduced by local oscillator frequency changes leads to refractivity errors no larger than 0.25 N units: equivalent to a relative humidity change of only 0.25% at 20°C. Requested stable local oscillator (STALO) frequency changes were accurate to 0.002 ppm based on laboratory measurements. More serious are the random phase change errors introduced when targets are not at the range-gate center and there are changes in the transmitter frequency (ΔfTx) or the refractivity (ΔN). Observations at C band with a 2-μs pulse show an additional 66° of phase change noise for a ΔfTx of 190 kHz (34 ppm); this allows the effect due to ΔN to be predicted. Even at S band with klystron transmitters, significant phase c...