Kirsty E. Hanley
University of Reading
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kirsty E. Hanley.
Geophysical Research Letters | 2012
Stephen E. Belcher; A. L. M. Grant; Kirsty E. Hanley; Baylor Fox-Kemper; Luke Van Roekel; Peter P. Sullivan; William G. Large; A. R. Brown; Adrian Hines; Daley Calvert; Anna Rutgersson; Heidi Pettersson; Jean-Raymond Bidlot; Peter A. E. M. Janssen; Jeff A. Polton
The turbulent mixing in thin ocean surface boundary layers (OSBL), which occupy the upper 100 m or so of the ocean, control the exchange of heat and trace gases between the atmosphere and ocean. Here we show that current parameterizations of this turbulent mixing lead to systematic and substantial errors in the depth of the OSBL in global climate models, which then leads to biases in sea surface temperature. One reason, we argue, is that current parameterizations are missing key surface-wave processes that force Langmuir turbulence that deepens the OSBL more rapidly than steady wind forcing. Scaling arguments are presented to identify two dimensionless parameters that measure the importance of wave forcing against wind forcing, and against buoyancy forcing. A global perspective on the occurrence of wave-forced turbulence is developed using re-analysis data to compute these parameters globally. The diagnostic study developed here suggests that turbulent energy available for mixing the OSBL is under-estimated without forcing by surface waves. Wave-forcing and hence Langmuir turbulence could be important over wide areas of the ocean and in all seasons in the Southern Ocean. We conclude that surface-wave-forced Langmuir turbulence is an important process in the OSBL that requires parameterization. Citation: Belcher, S. E., et al. (2012), A global perspective on Langmuir turbulence in the ocean surface boundary layer, Geophys. Res. Lett., 39, L18605, doi: 10.1029/2012GL052932.
Journal of Physical Oceanography | 2010
Kirsty E. Hanley; Stephen E. Belcher; Peter P. Sullivan
Abstract Generally, ocean waves are thought to act as a drag on the surface wind so that momentum is transferred downward, from the atmosphere into the waves. Recent observations have suggested that when long wavelength waves—which are characteristic of remotely generated swell—propagate faster than the surface wind, momentum can also be transferred upward. This upward momentum transfer acts to accelerate the near-surface wind, resulting in a low-level wave-driven wind jet. Previous studies have suggested that the sign reversal of the momentum flux is well predicted by the inverse wave age, the ratio of the surface wind speed to the speed of the waves at the peak of the spectrum. Data from the 40-yr ECMWF Re-Analysis (ERA-40) have been used here to calculate the global distribution of the inverse wave age to determine whether there are regions of the ocean that are usually in the wind-driven wave regime and others that are generally in the wave-driven wind regime. The wind-driven wave regime is found to o...
Journal of the Atmospheric Sciences | 2008
Kirsty E. Hanley; Stephen E. Belcher
Abstract The interaction between ocean surface waves and the overlying wind leads to a transfer of momentum across the air–sea interface. Atmospheric and oceanic models typically allow for momentum transfer to be directed only downward, from the atmosphere to the ocean. Recent observations have suggested that momentum can also be transferred upward when long wavelength waves, characteristic of remotely generated swell, propagate faster than the wind speed. The effect of upward momentum transfer on the marine atmospheric boundary layer is investigated here using idealized models that solve the momentum budget above the ocean surface. A variant of the classical Ekman model that accounts for the wave-induced stress demonstrates that, although the momentum flux due to the waves penetrates only a small fraction of the depth of the boundary layer, the wind profile is profoundly changed through its whole depth. When the upward momentum transfer from surface waves sufficiently exceeds the downward turbulent momen...
Monthly Weather Review | 2013
Kirsty E. Hanley; Daniel J. Kirshbaum; Nigel Roberts; Giovanni Leoncini
AbstractConvective-scale ensemble simulations with perturbed initial and lateral boundary conditions are performed to investigate the mechanisms and sensitivities of a central European convection event from the Convective and Orographically Induced Precipitation Study (COPS). In this event, a “primary” squall line developed ahead of a decaying mesoscale convective system (MCS) upstream of the Vosges Mountains (France), weakened over the Rhine valley, then regenerated as a “secondary” squall line over the Black Forest Mountains (Germany). All ensemble members captured the squall-line evolution, but most suffered from a delay in the onset of convection and positional errors of 50–150 km over the COPS region. These errors in the secondary initiation were linked to errors in the primary initiation. Detailed analysis revealed a similar primary initiation mechanism in all members: in the ascending branch of a midlevel frontal circulation ahead of the MCS, convection initiated within a mesoscale moisture anomaly...
Bulletin of the American Meteorological Society | 2015
Thorwald H. M. Stein; Robin J. Hogan; Peter A. Clark; Carol Halliwell; Kirsty E. Hanley; Humphrey W. Lean; John Nicol; R. S. Plant
Abstract A new frontier in weather forecasting is emerging by operational forecast models now being run at convection-permitting resolutions at many national weather services. However, this is not a panacea; significant systematic errors remain in the character of convective storms and rainfall distributions. The Dynamical and Microphysical Evolution of Convective Storms (DYMECS) project is taking a fundamentally new approach to evaluate and improve such models: rather than relying on a limited number of cases, which may not be representative, the authors have gathered a large database of 3D storm structures on 40 convective days using the Chilbolton radar in southern England. They have related these structures to storm life cycles derived by tracking features in the rainfall from the U.K. radar network and compared them statistically to storm structures in the Met Office model, which they ran at horizontal grid length between 1.5 km and 100 m, including simulations with different subgrid mixing length. T...
Bulletin of the American Meteorological Society | 2016
David Leon; Jeffrey R. French; Sonia Lasher-Trapp; Alan M. Blyth; Steven J. Abel; Susan P. Ballard; Andrew I. Barrett; Lindsay J. Bennett; Keith N. Bower; Barbara J. Brooks; P. R. A. Brown; Cristina Charlton-Perez; Thomas Choularton; Peter A. Clark; C. G. Collier; Jonathan Crosier; Zhiqiang Cui; Seonaid R. A. Dey; David Dufton; Chloe Eagle; M. Flynn; Martin Gallagher; Carol Halliwell; Kirsty E. Hanley; Lee Hawkness-Smith; Y. Huang; Graeme Kelly; Malcolm Kitchen; Alexei Korolev; Humphrey W. Lean
AbstractThe Convective Precipitation Experiment (COPE) was a joint U.K.–U.S. field campaign held during the summer of 2013 in the southwest peninsula of England, designed to study convective clouds that produce heavy rain leading to flash floods. The clouds form along convergence lines that develop regularly as a result of the topography. Major flash floods have occurred in the past, most famously at Boscastle in 2004. It has been suggested that much of the rain was produced by warm rain processes, similar to some flash floods that have occurred in the United States. The overarching goal of COPE is to improve quantitative convective precipitation forecasting by understanding the interactions of the cloud microphysics and dynamics and thereby to improve numerical weather prediction (NWP) model skill for forecasts of flash floods. Two research aircraft, the University of Wyoming King Air and the U.K. BAe 146, obtained detailed in situ and remote sensing measurements in, around, and below storms on several d...
Monthly Weather Review | 2014
Thorwald H. M. Stein; Robin J. Hogan; Kirsty E. Hanley; John Nicol; Humphrey W. Lean; R. S. Plant; Peter A. Clark; Carol Halliwell
AbstractA set of high-resolution radar observations of convective storms has been collected to evaluate such storms in the Met Office Unified Model during the Dynamical and Microphysical Evolution of Convective Storms (DYMECS) project. The 3-GHz Chilbolton Advanced Meteorological Radar was set up with a scan-scheduling algorithm to automatically track convective storms identified in real time from the operational rainfall radar network. More than 1000 storm observations gathered over 15 days in 2011 and 2012 are used to evaluate the model under various synoptic conditions supporting convection. In terms of the detailed three-dimensional morphology, storms in the 1500-m grid length simulations are shown to produce horizontal structures a factor of 1.5–2 wider compared to radar observations. A set of nested model runs at grid lengths down to 100 m show that the models converge in terms of storm width, but the storm structures in the simulations with the smallest grid lengths are too narrow and too intense c...
Bulletin of the American Meteorological Society | 2017
John S. Kain; Steve Willington; Adam J. Clark; Steven J. Weiss; Mark Weeks; Israel L. Jirak; Michael C. Coniglio; Nigel Roberts; Christopher D. Karstens; Jonathan M. Wilkinson; Kent H. Knopfmeier; Humphrey W. Lean; Laura Ellam; Kirsty E. Hanley; Rachel North; Dan Suri
AbstractIn recent years, a growing partnership has emerged between the Met Office and the designated U.S. national centers for expertise in severe weather research and forecasting, that is, the National Oceanic and Atmospheric Administration (NOAA) National Severe Storms Laboratory (NSSL) and the NOAA Storm Prediction Center (SPC). The driving force behind this partnership is a compelling set of mutual interests related to predicting and understanding high-impact weather and using high-resolution numerical weather prediction models as foundational tools to explore these interests.The forum for this collaborative activity is the NOAA Hazardous Weather Testbed, where annual Spring Forecasting Experiments (SFEs) are conducted by NSSL and SPC. For the last decade, NSSL and SPC have used these experiments to find ways that high-resolution models can help achieve greater success in the prediction of tornadoes, large hail, and damaging winds. Beginning in 2012, the Met Office became a contributing partner in ann...
Quarterly Journal of the Royal Meteorological Society | 2015
Kirsty E. Hanley; R. S. Plant; Thorwald H. M. Stein; Robin J. Hogan; John Nicol; Humphrey W. Lean; Carol Halliwell; Peter A. Clark
Quarterly Journal of the Royal Meteorological Society | 2011
Christian Barthlott; R. R. Burton; Daniel J. Kirshbaum; Kirsty E. Hanley; Evelyne Richard; Jean-Pierre Chaboureau; Jörg Trentmann; Bastian Kern; Hans-Stefan Bauer; Thomas Schwitalla; C. Keil; Yann Seity; Alan Gadian; Alan M. Blyth; S. D. Mobbs; Cyrille Flamant; J. Handwerker