Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John T. Montroy is active.

Publication


Featured researches published by John T. Montroy.


Proceedings of SPIE, the International Society for Optical Engineering | 2000

Development of hybrid CMOS visible focal plane arrays at Rockwell

Yibin Bai; John T. Montroy; John D. Blackwell; Mark C. Farris; Lester J. Kozlowski; Kadri Vural

Silicon-based hybrid CMOS visible focal plane array (FPA) technology is emerging as a strong contender for scientific applications that require broad spectral response with low noise, highly integrated functionality and radiation hardness. CMOS-based FPAs offer many advantages in high speed, low-noise detection and signal processing. As a high performance alternative to advanced CCD imaging arrays, the hybrid design enables independent optimization of the silicon detector array and silicon readout electronics. Multiplexer commonality with the instruments IR channels is another attractive feature for integrators of sensor sites such as for hyperspectral spectrometers. In this paper, the technical merits of Rockwells CMOS-based hybrid visible FPAs are described including key detector performance aspects, interface electronics requirements, radiation hardness and concomitant implications for diverse imaging applications. At this time we have developed 640 X 480 and 1024 X 1024 hybrid imagers with approximately equals 100% optical fill factor, high broadband QE spanning ultraviolet (UV) through near infrared (NIR), wide dynamic range, and high pixel operability. Dark current of approximately equals 0.01e-/sec and read noise approximately equals 6e- have been measured on one prototype 1024 X 1024 FPA that uses Hawaii readout integrated circuit (ROIC). Initial radiation data indicate a total ionization dose (TID) tolerance greater than 35 Krad for our standard CMOS process.


Optical Science and Technology, SPIE's 48th Annual Meeting | 2004

Hybrid CMOS focal plane array with extended UV and NIR response for space applications

Yibin Bai; Steve G. Bernd; J. R. Hosack; Mark C. Farris; John T. Montroy; Jagmohan Bajaj

Silicon-based hybrid CMOS focal plane array technology offers many advantages needed for both ground-based and space imaging applications. These advantages include enhanced UV and NIR sensitivity, extensive on-chip readout capability, inherent radiation hardness, flexible imaging readout and the ability to provide extremely low noise at high video rates. For infrared imaging applications that involve UV-through visible channels, the readout electronics commonality facilitates a great simplification to system designs. In this paper, Rockwell Scientific CMOS-based hybrid silicon FPA technology and the recent progress are presented. The hybrid FPAs developed include 640x480, 1024x1024 and 2048x2048 formats with pixel sizes ranging from 27μm to 18μm square, featuring a high optical fill factor (~100%), broad-band response (200nm to 1000nm) with high quantum efficiency, and low read noise (<6e-) that approaches astronomy CCDs at 100KHz video rate and surpasses astronomy CCDs at 1MHz rate. Other performance parameters, such as spatial uniformity, dark current, pixel crosstalk/MTF and CMOS features are also discussed.


Proceedings of SPIE, the International Society for Optical Engineering | 2000

Latest results on HgCdTe 2048x2048 and silicon focal plane arrays

Craig A. Cabelli; Donald E. Cooper; Allan K. Haas; Lester J. Kozlowski; Gary L. Bostrup; Annie Chi-yi Chen; John D. Blackwell; John T. Montroy; Kadri Vural; William E. Kleinhans; Klaus-Werner Hodapp; Donald N. B. Hall

The worlds first 2048 X 2048 HgCdTe infrared focal plane array (FPA) has been developed by Rockwell Science Center for infrared astronomy. The Hawaii-2 is the largest CMOS multiplexer designed to date, developed to interface with both infrared and visible detector arrays. The 18 micrometer pixel pitch was selected to accommodate both reasonable telescope optics and maximize yield in the fabrication of such a large readout. The fabrication uses world-class submicron photolithography to maximize yield of high quality devices. We will report on the characterization of FPAs using the Hawaii-2 multiplexer mated to SWIR detector arrays with a spectral response of 0.9 micrometer to 2.5 micrometer. These detector arrays have been processed on Liquid Phase Epitaxy (LPE) HgCdTe on sapphire substrates, also known as PACE-1. We also report on characterization of Silicon detectors in terms of their quantum efficiency, spectral response, and dark current.


Astronomical Telescopes and Instrumentation | 2000

Visible and infrared detectors at Rockwell Science Center

Lester J. Kozlowski; John T. Montroy; Craig A. Cabelli; Donald E. Cooper; Annie Chi-yi Chen; Gary L. Bostrup; Yibin Bai; Kadri Vural; Klaus-Werner Hodapp; Donald N. B. Hall

Rockwell Space Center is developing low-noise visible and IR imaging sensors and systems for astronomy, high-end commercial, NASA, and advanced military applications. The first science grade 2048 by 2048 HAWAII-2 focal plane array (FPA) for astronomy was recently demonstrated for the SWIR waveband. Science-grade deliveries to the University of Hawaiis Institute for Astronomy, the European Southern Observatory and the Subaru Telescope, among others, will soon start. MWIR/visible 2048 by 2048 HAWAII-2 arrays are also being developed for the NGST program using our process for removing the CdZnTe substrate from the back-side illuminated HgCdTe FPAs to detect visible radiation in addition to IR. Previously, more than 25 science grade 2.5micrometers 1024 by 1024 HAWAII FPAs were delivered for use in many observatories; these typically exhibit < 0.1 e-/s dark current and < 10 e- read noise after correlated double sampling at temperatures above 60K. 1024 by 1024 FPAs development is also continuing; dark current < 1 e-/s has been measured at 140K for a NIR 1024 by 1024 HAWAII array. In a related effort, development of high frame rate, low noise FPAs has begun for wavefront sensing including adaptive optical systems for both visible and NIR/SWIR bands. Hybrid Visible Silicon Imager development is also continuing, expanding the success achieved with prior 640 by 480 FPAs. We are now demonstrating 1024 by 1024 arrays with 0.3-1.05 micrometers response. The silicon detectors in HyViSI FPAs are independently processed on silicon wafers and mated to the same multiplexers fabricated originally for interface to HgCdTe detectors. HyViSI FPA quantum efficiency is > 90 percent with near-100 percent fill factor, and the dark current is negligible with minimum cooling. Our near-term plan to develop 4096 by 4096 visible and IR FPAs will also be discussed.


SPIE's International Symposium on Optical Science, Engineering, and Instrumentation | 1998

Ultralow-noise infrared focal plane array status

Lester J. Kozlowski; John T. Montroy; Kadri Vural; William E. Kleinhans

Low-noise pixel-based amplification via sub-micron CMOS is enabling advanced focal plane arrays offering ultra-low read noise for infrared astronomy, wave-front sensing, IR spectroscopy, spaceborne sensors and other discriminating uses. Specifically, we report the achievement of less than 30 e- read noise at video frame rates using capacitive transimpedance amplification and less than 1 e- using an enhanced form of gate modulation. We also compare several low- noise IR FPAs at various cutoff wavelengths from 1.1 micrometer to nearly 17 micrometer.


Proceedings of SPIE | 2005

Recent progress of hybrid CMOS visible focal plane array technology

Yibin Bai; Mark C. Farris; Atul Joshi; J. R. Hosack; Jagmohan Bajaj; John T. Montroy

Silicon-based hybrid CMOS visible focal plane array technology is emerging as a viable high performance alternative to scientific CCDs. The progress is attributed to the rapid advances in CMOS technology, mature precision flip-chip hybridization of large size and fine pixel arrays, and detector array performance improvements. Its technology readiness level (TRL) for space applications is being enhanced by relevant environmental tests and in-depth characterization of sensor performance. In this paper, we present recent results of Rockwell Scientifics hybrid CMOS silicon focal plane array technology, including large format arrays up to 2048x2048, broadband QE, sensor noise improvement, high radiation hardness, and the higher degree of system integration through on-chip ADCs and companion ASICs.


Infrared Detectors and Focal Plane Arrays VII | 2002

Advanced imaging sensors at Rockwell Scientific Company

John T. Montroy; James D. Garnett; Scott A. Cabelli; Markus Loose; Atul Joshi; Gary W. Hughes; Lester J. Kozlowski; Allan K. Haas; Selmer Wong; M. Zandian; Annie Chi-yi Chen; J. G. Pasko; Mark C. Farris; Craig A. Cabelli; Donald E. Cooper; J. M. Arias; Jagmohan Bajaj; Kadri Vural

The past 2 to 3 years has been a period of explosive growth in technology development for imaging sensors at Rockwell Scientific Co. (RSC). The state of the art has been advanced significantly, resulting in a number of unique advanced imaging sensor products. A few key examples are: 2048 x 2048 sensor chip assemblies (SCA) for ground and space-based applications, 4096 x 4096 mosaic close-butted mosaic FPA assemblies, a very high performance 10 x 1024 hybridized linear SCA for optical network monitoring and other applications, the revolutionary CMOS ProCam-HD imaging system-on-a-chip for high definition television (HDTV), and RSCs near-infrared emission microscope camera for VLSI defect detection/analysis. This paper provides selected updates of these products and thereby provides an overview of the ongoing highly fertile period of technology and product development at Rockwell Scientific. A view into future directions for advanced imaging sensors is also provided.


Proceedings of SPIE | 2004

The infrared detectors for the wide field camera 3 on HST

Massimo Robberto; Sylvia M. Baggett; B. N. Hilbert; John W. MacKenty; Randy A. Kimble; Robert J. Hill; David A. Cottingham; Greg Delo; Scott D. Johnson; Wayne B. Landsman; Eliot M. Malumuth; Elizabeth J. Polidan; Anne Marie Russell; Augustyn Waczynski; Edward J. Wassell; Yiting Wen; Allan K. Haas; John T. Montroy; Eric C. Piquette; Kadri Vural; Craig A. Cabelli; Donald N. B. Hall

We present the performance of the IR detectors developed for the WFC3 project. These are HgCdTe 1Kx1K devices with cutoff wavelength at 1.7 μm and 150K operating temperature. The two selected flight parts, FPA#64 (prime) and FPA#59 (spare) show quantum efficiency higher than 80% at λ=1.6 μm and greater than 40% at λ>1.1μm, readout noise of ~25 e- rms with double correlated sampling, and mean dark current of ~0.04 e/s/pix at 150K. We also report the results obtained at NASA GSFC/DCL on these and other similar devices in what concerns the QE long-term stability, intra-pixel response, and dark current variation following illumination or reset.


Laser Radar Technology and Applications VIII | 2003

Three Dimensional Ladar Focal Plane Array Development at Rockwell Scientific: An Update

Mohan Vaidyanathan; Song Xue; Kenneth Johnson; John D. Blackwell; M. Zandian; Benji Hanyaloglu; Lester J. Kozlowski; Gary W. Hughes; John T. Montroy; Kadri Vural

We have developed a three-dimensional (3D) imaging ladar focal plane array (FPA) for military and commercial applications. The FPA provides snap-shot, direct detection, high-resolution range and range-sampled intensity imaging capability on a single chip. The FPA is made of a 64x64 element, 100-μm pixel pitch detector array that is directly bump bonded to a matched CMOS based silicon readout integrated circuit (ROIC) with parallel ladar signal processing at each pixel. A room temperature, SWIR InGaAs detector variant for imaging near 1.5-μm wavelengths and a cooled MWIR HgCdTe detector variant for imaging near 3-μm to 5-μm wavelengths have been fabricated. We have built a prototype SWIR FPA, integrated it to a compact, transportable SWIR flash ladar transceiver, and collected initial range images outdoors. We present the measured performances of the detector, the readout, and the image data collected with the focal plane array.


Optical Science and Technology, SPIE's 48th Annual Meeting | 2004

Selection of the infrared detectors for Wide Field Camera 3 on the Hubble Space Telescope

Massimo Robberto; Massimo Stiavelli; Sylvia M. Baggett; B. N. Hilbert; John W. MacKenty; Randy A. Kimble; Robert J. Hill; David A. Cottingham; Gregory Delo; Scott D. Johnson; Wayne B. Landsman; Eliot M. Malumuth; Elizabeth J. Polidan; Anne Marie Russell; Augustyn Waczynski; Edward J. Wassell; Yiting Wen; Allan K. Haas; John T. Montroy; Eric C. Piquette; Kadri Vural; Craig A. Cabelli; Donald N. B. Hall

Wide Field Camera 3 is a fourth generation instrument for the Hubble Space Telescope (HST), to be installed during the next HST Servicing Mission 4. For its infrared channel Rockwell Scientific Company has developed a new type of HgCdTe 1Kx1K detector, called WFC3-1R, with cutoff wavelength at 1.7μm and 150K operating temperature. The WFC3-IR detectors are based on HgCdTe MBE grown on a CdZnTe substrate and use a new type of multiplexer, the Hawaii-1R MUX. Two flight detectors, a prime and a spare, have been recently selected on the basis of the measures performed at NASA Goddard Research Center - Detector Characterization Laboratory. These parts show quantum efficiency higher than 80% at λ=1.6μm and greater than 40% at λ>1.1μm, readout noise of ~25 e- rms with double correlated sampling, and mean dark current of ~0.04 e/s/pix at 150K. We show that the IR channel of WFC3, equipped with one of these flight detectors, beats the instrument requirements in all configurations and promises to have a discovery efficiency significantly higher than NICMOS. In particular, a two-band wide-area, deep survey made with WFC3 exceeds the discovery efficiency of NICMOS before and after the installation of NCS by a factor of 15 and 10, respectively.

Collaboration


Dive into the John T. Montroy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge