Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan E. Dickerson is active.

Publication


Featured researches published by Jonathan E. Dickerson.


Nature Medicine | 2009

A new human immunodeficiency virus derived from gorillas.

Jean-Christophe Plantier; Marie Leoz; Jonathan E. Dickerson; Fabienne De Oliveira; François Cordonnier; Véronique Lemée; Florence Damond; David Robertson; François Simon

We have identified a new human immunodeficiency virus in a Cameroonian woman. It is closely related to gorilla simian immunodeficiency virus (SIVgor) and shows no evidence of recombination with other HIV-1 lineages. This new virus seems to be the prototype of a new HIV-1 lineage that is distinct from HIV-1 groups M, N and O. We propose to designate it HIV-1 group P.


Nature Genetics | 2012

Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature

Gillian I. Rice; Paul R. Kasher; Gabriella M.A. Forte; Niamh M. Mannion; Sam M. Greenwood; Marcin Szynkiewicz; Jonathan E. Dickerson; Sanjeev Bhaskar; Massimiliano Zampini; Tracy A. Briggs; Emma M. Jenkinson; Carlos A. Bacino; Roberta Battini; Enrico Bertini; Paul A. Brogan; Louise Brueton; Marialuisa Carpanelli; Corinne De Laet; Pascale de Lonlay; Mireia del Toro; Isabelle Desguerre; Elisa Fazzi; Angels García-Cazorla; Arvid Heiberg; Masakazu Kawaguchi; Ram Kumar; Jean-Pierre Lin; Charles Marques Lourenço; Alison Male; Wilson Marques

Adenosine deaminases acting on RNA (ADARs) catalyze the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) and thereby potentially alter the information content and structure of cellular RNAs. Notably, although the overwhelming majority of such editing events occur in transcripts derived from Alu repeat elements, the biological function of non-coding RNA editing remains uncertain. Here, we show that mutations in ADAR1 (also known as ADAR) cause the autoimmune disorder Aicardi-Goutières syndrome (AGS). As in Adar1-null mice, the human disease state is associated with upregulation of interferon-stimulated genes, indicating a possible role for ADAR1 as a suppressor of type I interferon signaling. Considering recent insights derived from the study of other AGS-related proteins, we speculate that ADAR1 may limit the cytoplasmic accumulation of the dsRNA generated from genomic repetitive elements.


Nature Genetics | 2012

Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus

Beverley Anderson; Paul R. Kasher; Josephine Mayer; Marcin Szynkiewicz; Emma M. Jenkinson; Sanjeev Bhaskar; Jill Urquhart; Sarah B. Daly; Jonathan E. Dickerson; James O'Sullivan; Elisabeth Oppliger Leibundgut; Joanne Muter; Ghada M H Abdel-Salem; Riyana Babul-Hirji; Peter Baxter; Andrea Berger; Luisa Bonafé; Janice E Brunstom-Hernandez; Johannes A Buckard; David Chitayat; Wk Chong; Duccio Maria Cordelli; Patrick Ferreira; Joel Victor Fluss; Ewan H. Forrest; Emilio Franzoni; Caterina Garone; Simon Hammans; Gunnar Houge; Imelda Hughes

Coats plus is a highly pleiotropic disorder particularly affecting the eye, brain, bone and gastrointestinal tract. Here, we show that Coats plus results from mutations in CTC1, encoding conserved telomere maintenance component 1, a member of the mammalian homolog of the yeast heterotrimeric CST telomeric capping complex. Consistent with the observation of shortened telomeres in an Arabidopsis CTC1 mutant and the phenotypic overlap of Coats plus with the telomeric maintenance disorders comprising dyskeratosis congenita, we observed shortened telomeres in three individuals with Coats plus and an increase in spontaneous γH2AX-positive cells in cell lines derived from two affected individuals. CTC1 is also a subunit of the α-accessory factor (AAF) complex, stimulating the activity of DNA polymerase-α primase, the only enzyme known to initiate DNA replication in eukaryotic cells. Thus, CTC1 may have a function in DNA metabolism that is necessary for but not specific to telomeric integrity.


AIDS Research and Human Retroviruses | 2008

Cataloguing the HIV type 1 human protein interaction network.

Roger G. Ptak; William Fu; Brigitte E. Sanders-Beer; Jonathan E. Dickerson; John W. Pinney; David Robertson; Mikhail N. Rozanov; Kenneth S. Katz; Donna Maglott; Kim D. Pruitt; Carl W. Dieffenbach

Although many interactions between HIV-1 and human proteins have been reported in the scientific literature, no publicly accessible source for efficiently reviewing this information was available. Therefore, a project was initiated in an attempt to catalogue all published interactions between HIV-1 and human proteins. HIV-related articles in PubMed were used to develop a database containing names, Entrez GeneIDs, and RefSeq protein accession numbers of interacting proteins. Furthermore, brief descriptions of the interactions, PubMed identification numbers of articles describing the interactions, and keywords for searching the interactions were incorporated. Over 100,000 articles were reviewed, resulting in the identification of 1448 human proteins that interact with HIV-1 comprising 2589 unique HIV-1-to-human protein interactions. Preliminary analysis of the extracted data indicates 32% were direct physical interactions (e.g., binding) and 68% were indirect interactions (e.g., upregulation through activation of signaling pathways). Interestingly, 37% of human proteins in the database were found to interact with more than one HIV-1 protein. For example, the signaling protein mitogen-activated protein kinase 1 has a surprising range of interactions with 10 different HIV-1 proteins. Moreover, large numbers of interactions were published for the HIV-1 regulatory protein Tat and envelope proteins: 30% and 33% of total interactions identified, respectively. The database is accessible at http://www.ncbi.nlm.nih.gov/RefSeq/HIVInteractions/ and is cross-linked to other National Center for Biotechnology Information databases and programs via Entrez Gene. This database represents a unique and continuously updated scientific resource for understanding HIV-1 replication and pathogenesis to assist in accelerating the development of effective therapeutic and vaccine interventions.


Journal of Medical Genetics | 2012

A paradigm shift in the delivery of services for diagnosis of inherited retinal disease

James O'Sullivan; Brendan G Mullaney; Sanjeev Bhaskar; Jonathan E. Dickerson; Georgina Hall; Anna O'Grady; Andrew R. Webster; Simon C. Ramsden; Graeme C.M. Black

Objectives Current technologies for delivering gene testing are labour-intensive and expensive. Over the last 3 years, new high-throughput DNA sequencing techniques (next generation sequencing; NGS), with the capability to analyse multiple genes or entire genomes, have been rapidly adopted into research. This study examines the possibility of incorporating NGS into a clinical UK service context. Methods The study applied NGS of 105 genes to 50 patients known to be affected by inherited forms of blindness in the setting of a UK National Health Service-accredited diagnostic molecular genetics laboratory. The study assessed the ability of an NGS protocol to identify likely disease-causing genetic variants when compared with current methodologies available through UK diagnostic laboratories. Results Conventional testing is only applicable to the minority of patients with inherited retinal disease and identifies mutations in fewer than one in four of those patients tested. By contrast, the NGS assay is directed at all patients with such disorders and identifies disease-causing mutations in 50–55%, which is a dramatic increase. This includes patients with apparently ‘sporadic’ disease, and those for whom clinical management and prognosis are altered as a consequence of defining their disease at a molecular level. Conclusions The new NGS approach delivers a step change in the diagnosis of inherited eye disease, provides precise diagnostic information and extends the possibility of targeted treatments including gene therapy. The approach represents an exemplar that illustrates the opportunity that NGS provides for broadening the availability of genetic testing. The technology will be applied to many conditions that are associated with high levels of genetic heterogeneity.


Arthritis & Rheumatism | 2013

Protein kinase Cδ deficiency causes mendelian systemic lupus erythematosus with B cell-defective apoptosis and hyperproliferation

Alexandre Belot; Paul R. Kasher; Eleanor W. Trotter; Anne Perrine Foray; Anne Laure Debaud; Gillian I. Rice; Marcin Szynkiewicz; Marie Thérèse Zabot; Isabelle Rouvet; Sanjeev Bhaskar; Sarah B. Daly; Jonathan E. Dickerson; Josephine Mayer; James O'Sullivan; Laurent Juillard; Jill Urquhart; Shameem Fawdar; Anna A. Marusiak; Natalie L. Stephenson; Bohdan Waszkowycz; Michael W. Beresford; Leslie G. Biesecker; Graeme C.M. Black; Céline René; Jean François Eliaou; Nicole Fabien; Bruno Ranchin; Pierre Cochat; Patrick M. Gaffney; Flore Rozenberg

OBJECTIVE Systemic lupus erythematosus (SLE) is a prototype autoimmune disease that is assumed to occur via a complex interplay of environmental and genetic factors. Rare causes of monogenic SLE have been described, providing unique insights into fundamental mechanisms of immune tolerance. The aim of this study was to identify the cause of an autosomal-recessive form of SLE. METHODS We studied 3 siblings with juvenile-onset SLE from 1 consanguineous kindred and used next-generation sequencing to identify mutations in the disease-associated gene. We performed extensive biochemical, immunologic, and functional assays to assess the impact of the identified mutations on B cell biology. RESULTS We identified a homozygous missense mutation in PRKCD, encoding protein kinase δ (PKCδ), in all 3 affected siblings. Mutation of PRKCD resulted in reduced expression and activity of the encoded protein PKCδ (involved in the deletion of autoreactive B cells), leading to resistance to B cell receptor- and calcium-dependent apoptosis and increased B cell proliferation. Thus, as for mice deficient in PKCδ, which exhibit an SLE phenotype and B cell expansion, we observed an increased number of immature B cells in the affected family members and a developmental shift toward naive B cells with an immature phenotype. CONCLUSION Our findings indicate that PKCδ is crucial in regulating B cell tolerance and preventing self-reactivity in humans, and that PKCδ deficiency represents a novel genetic defect of apoptosis leading to SLE.


AIDS | 2009

HIV-host interactions: a map of viral perturbation of the host system.

John W. Pinney; Jonathan E. Dickerson; William Fu; Brigitte E. Sanders-Beer; Roger G. Ptak; David Robertson

Since the 1980s, the rapid progression of the HIV/AIDS pandemic has prompted a major international research effort. As a result, the current knowledge on HIV biology, its evolution, and origins [1–5] exceeds that of many, if not all, other viruses. One of the most important areas of HIV research is the detailed understanding of HIV replication. As with all viruses, HIV must exploit the host’s cellular machinery and metabolism to copy its genetic material, synthesize viral proteins, and assemble new virions. The viral replication cycle is thus dependent on an intricate network of direct and indirect protein interactions: between the viral proteins, between the virus and the host, and ultimately between the various host proteins that constitute the subverted cellular systems. When we also take into account the host’s immune response and intrinsic antiviral factors, there are clearly a large number of host–pathogen relationships that are important to our full understanding of HIV biology. However, until recently [6], this valuable information has remained ‘locked’ in the published literature, making it time-consuming to study by individual researchers and inaccessible to computational analysis, thus hindering the progress of research. Here we highlight new developments in the area of host–pathogen systems biology that in our opinion will provide helpful insights to the HIVresearch community.


Lancet Neurology | 2014

The genetic basis of DOORS syndrome: an exome-sequencing study

Philippe M. Campeau; Dalia Kasperaviciute; James T. Lu; Lindsay C. Burrage; Choel Kim; Mutsuki Hori; Berkley R. Powell; Fiona Stewart; Temis Maria Felix; Jenneke van den Ende; Marzena Wisniewska; Huelya Kayserili; Patrick Rump; Sheela Nampoothiri; Salim Aftimos; Antje Mey; Lal. D.V. Nair; Michael L. Begleiter; Isabelle De Bie; Girish Meenakshi; Mitzi L. Murray; Gabriela M. Repetto; Mahin Golabi; Edward Blair; Alison Male; Fabienne Giuliano; Ariana Kariminejad; William G. Newman; Sanjeev Bhaskar; Jonathan E. Dickerson

Summary Background Deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures (DOORS) syndrome is a rare autosomal recessive disorder of unknown cause. We aimed to identify the genetic basis of this syndrome by sequencing most coding exons in affected individuals. Methods Through a search of available case studies and communication with collaborators, we identified families that included at least one individual with at least three of the five main features of the DOORS syndrome: deafness, onychodystrophy, osteodystrophy, intellectual disability, and seizures. Participants were recruited from 26 centres in 17 countries. Families described in this study were enrolled between Dec 1, 2010, and March 1, 2013. Collaborating physicians enrolling participants obtained clinical information and DNA samples from the affected child and both parents if possible. We did whole-exome sequencing in affected individuals as they were enrolled, until we identified a candidate gene, and Sanger sequencing to confirm mutations. We did expression studies in human fibroblasts from one individual by real-time PCR and western blot analysis, and in mouse tissues by immunohistochemistry and real-time PCR. Findings 26 families were included in the study. We did exome sequencing in the first 17 enrolled families; we screened for TBC1D24 by Sanger sequencing in subsequent families. We identified TBC1D24 mutations in 11 individuals from nine families (by exome sequencing in seven families, and Sanger sequencing in two families). 18 families had individuals with all five main features of DOORS syndrome, and TBC1D24 mutations were identified in half of these families. The seizure types in individuals with TBC1D24 mutations included generalised tonic-clonic, complex partial, focal clonic, and infantile spasms. Of the 18 individuals with DOORS syndrome from 17 families without TBC1D24 mutations, eight did not have seizures and three did not have deafness. In expression studies, some mutations abrogated TBC1D24 mRNA stability. We also detected Tbc1d24 expression in mouse phalangeal chondrocytes and calvaria, which suggests a role of TBC1D24 in skeletogenesis. Interpretation Our findings suggest that mutations in TBC1D24 seem to be an important cause of DOORS syndrome and can cause diverse phenotypes. Thus, individuals with DOORS syndrome without deafness and seizures but with the other features should still be screened for TBC1D24 mutations. More information is needed to understand the cellular roles of TBC1D24 and identify the genes responsible for DOORS phenotypes in individuals who do not have a mutation in TBC1D24. Funding US National Institutes of Health, the CIHR (Canada), the NIHR (UK), the Wellcome Trust, the Henry Smith Charity, and Action Medical Research.


PLOS ONE | 2011

Defining the Role of Essential Genes in Human Disease

Jonathan E. Dickerson; Ana Zhu; David Robertson; Kathryn E. Hentges

A greater understanding of the causes of human disease can come from identifying characteristics that are specific to disease genes. However, a full understanding of the contribution of essential genes to human disease is lacking, due to the premise that these genes tend to cause developmental abnormalities rather than adult disease. We tested the hypothesis that human orthologs of mouse essential genes are associated with a variety of human diseases, rather than only those related to miscarriage and birth defects. We segregated human disease genes according to whether the knockout phenotype of their mouse ortholog was lethal or viable, defining those with orthologs producing lethal knockouts as essential disease genes. We show that the human orthologs of mouse essential genes are associated with a wide spectrum of diseases affecting diverse physiological systems. Notably, human disease genes with essential mouse orthologs are over-represented among disease genes associated with cancer, suggesting links between adult cellular abnormalities and developmental functions. The proteins encoded by essential genes are highly connected in protein-protein interaction networks, which we find correlates with an over-representation of nuclear proteins amongst essential disease genes. Disease genes associated with essential orthologs also are more likely than those with non-essential orthologs to contribute to disease through an autosomal dominant inheritance pattern, suggesting that these diseases may actually result from semi-dominant mutant alleles. Overall, we have described attributes found in disease genes according to the essentiality status of their mouse orthologs. These findings demonstrate that disease genes do occupy highly connected positions in protein-protein interaction networks, and that due to the complexity of disease-associated alleles, essential genes cannot be ignored as candidates for causing diverse human diseases.


PLOS Computational Biology | 2010

Patterns of HIV-1 Protein Interaction Identify Perturbed Host-Cellular Subsystems

Jamie I. MacPherson; Jonathan E. Dickerson; John W. Pinney; David Robertson

Human immunodeficiency virus type 1 (HIV-1) exploits a diverse array of host cell functions in order to replicate. This is mediated through a network of virus-host interactions. A variety of recent studies have catalogued this information. In particular the HIV-1, Human Protein Interaction Database (HHPID) has provided a unique depth of protein interaction detail. However, as a map of HIV-1 infection, the HHPID is problematic, as it contains curation error and redundancy; in addition, it is based on a heterogeneous set of experimental methods. Based on identifying shared patterns of HIV-host interaction, we have developed a novel methodology to delimit the core set of host-cellular functions and their associated perturbation from the HHPID. Initially, using biclustering, we identify 279 significant sets of host proteins that undergo the same types of interaction. The functional cohesiveness of these protein sets was validated using a human protein-protein interaction network, gene ontology annotation and sequence similarity. Next, using a distance measure, we group host protein sets and identify 37 distinct higher-level subsystems. We further demonstrate the biological significance of these subsystems by cross-referencing with global siRNA screens that have been used to detect host factors necessary for HIV-1 replication, and investigate the seemingly small intersect between these data sets. Our results highlight significant host-cell subsystems that are perturbed during the course of HIV-1 infection. Moreover, we characterise the patterns of interaction that contribute to these perturbations. Thus, our work disentangles the complex set of HIV-1-host protein interactions in the HHPID, reconciles these with siRNA screens and provides an accessible and interpretable map of infection.

Collaboration


Dive into the Jonathan E. Dickerson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sanjeev Bhaskar

Central Manchester University Hospitals NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul R. Kasher

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alison Male

University College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge