Jörn Dymke
Charité
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jörn Dymke.
Journal of Biomechanics | 2011
Ines Kutzner; Steffen Küther; Bernd Heinlein; Jörn Dymke; Alwina Bender; Andreas Halder; G. Bergmann
Knee osteoarthritis occurs predominately at the medial compartment. To unload the affected compartment, valgus braces are used which induce an additional valgus moment in order to shift the load more laterally. Until now the biomechanical effect of braces was mainly evaluated by measuring changes in external knee adduction moments. The aim of this study was to investigate if and to which extent the medial compartment load is reduced in vivo when wearing valgus braces. Six components of joint contact load were measured in vivo in three subjects, using instrumented, telemeterized knee implants. From the forces and moments the medio-lateral force distribution was calculated. Two braces, MOS Genu (Bauerfeind AG) and Genu Arthro (Otto Bock) were investigated in neutral, 4° and 8° valgus adjustment during walking, stair ascending and descending. During walking with the MOS brace in 4°/8° valgus adjustment, medial forces were reduced by 24%/30% on average at terminal stance. During walking with the GA in the 8° valgus position, medial forces were reduced by only 7%. During stair ascending/descending significant reductions of 26%/24% were only observed with the MOS (8°). The load reducing ability of the two investigated valgus braces was confirmed in three subjects. However, the load reduction depends on the brace stiffness and its valgus adjustment and varies strongly inter-individually. Valgus adjustments of 8° might, especially with the MOS brace, not be tolerated by patients for a long time. Medial load reductions of more than 25% can therefore probably not be expected in clinical practise.
Journal of Orthopaedic Research | 2011
Ines Kutzner; Philipp Damm; Bernd Heinlein; Jörn Dymke; Friedmar Graichen; G. Bergmann
A conventional method to unload the medial compartment of patients with gonarthrosis and thus to achieve pain reduction is the use of laterally wedged shoes. Our aim was to measure in vivo their effect on medial compartment loads using instrumented knee implants. Medial tibio‐femoral contact forces were measured in six subjects with instrumented knee implants during walking with the following shoes: without wedge, with 5 and 10 mm wedges under the lateral sole, and with a laterally wedged insole (5 mm). Measurements were repeated with the shoes in combination with an ankle‐stabilizing orthosis. Without orthosis, peak medial forces were reduced by only 1–4% on average. With orthosis, the average reduction was 2–7%. Highest reductions were generally observed with the 10 mm wedge, followed by the 5 mm wedge, and the 5 mm insole. Individual force reductions reached up to 15%. Medial force reductions while walking with wedged shoes were generally small. Due to high inter‐individual differences, it seems that some patients might benefit from lateral wedges, whereas others might not. Further analyses of the individual kinematics will show which factors are most decisive for the reduction of medial compartment load.
Journal of Biomechanics | 2013
Ines Kutzner; Daniel Stephan; Jörn Dymke; Alwina Bender; Friedmar Graichen; G. Bergmann
Since footwear is commonly used every day, its influence on knee joint loading and thereby on the development and progression of osteoarthritis may be crucial. So far the influence of footwear has been examined only indirectly. The aim of this study was to directly measure the effect of footwear on tibiofemoral contact loads during walking. Instrumented knee implants with telemetric data transmission were used to measure the tibiofemoral contact forces and moments in six subjects. The loads during walking with four different shoes (basic running shoes, advanced running shoes, classical dress shoes and shoes with a soft rounded sole in the sagittal plane (MBT)) were compared to those during barefoot walking. Peak values of all six load components were analyzed. In general, footwear tended to increase knee joint loading slightly, with the dress shoe being the most unfavorable type of footwear. At the early stance phase all load components were increased by all shoe types. The resultant force rose by 2-5%, the internal adduction moment by 7-12% and the forces on the medial compartment by 3-5%. Significant reductions of the resultant force were solely observed for the advanced running shoe (-6%) and the MBT (-9%) shoe at late stance. Also the medial compartment force was slightly yet non-significantly reduced by 2-5% with the two shoes. It is questionable whether such small load changes have an influence on the progression of gonarthrosis. Future research is necessary to examine which factors regarding the shoe design, such as heel height, arch support or flexibility are most decisive for a reduction of knee joint loading.
PLOS ONE | 2014
A. Rohlmann; David Pohl; Alwina Bender; Friedmar Graichen; Jörn Dymke; Hendrik Schmidt; G. Bergmann
Activities with high spinal loads should be avoided by patients with back problems. Awareness about these activities and knowledge of the associated loads are important for the proper design and pre-clinical testing of spinal implants. The loads on an instrumented vertebral body replacement have been telemetrically measured for approximately 1000 combinations of activities and parameters in 5 patients over a period up to 65 months postoperatively. A database containing, among others, extreme values for load components in more than 13,500 datasets was searched for 10 activities that cause the highest resultant force, bending moment, torsional moment, or shear force in an anatomical direction. The following activities caused high resultant forces: lifting a weight from the ground, forward elevation of straight arms with a weight in hands, moving a weight laterally in front of the body with hanging arms, changing the body position, staircase walking, tying shoes, and upper body flexion. All activities have in common that the center of mass of the upper body was moved anteriorly. Forces up to 1650 N were measured for these activities of daily life. However, there was a large intra- and inter-individual variation in the implant loads for the various activities depending on how exercises were performed. Measured shear forces were usually higher in the posterior direction than in the anterior direction. Activities with high resultant forces usually caused high values of other load components.
PLOS ONE | 2012
G. Bergmann; Friedmar Graichen; Jörn Dymke; A. Rohlmann; Georg N. Duda; Philipp Damm
When walking long distances, hip prostheses heat up due to friction. The influence of articulating materials and lubricating properties of synovia on the final temperatures, as well as any potential biological consequences, are unknown. Such knowledge is essential for optimizing implant materials, identifying patients who are possibly at risk of implant loosening, and proving the concepts of current joint simulators. An instrumented hip implant with telemetric data transfer was developed to measure the implant temperatures in vivo. A clinical study with 100 patients is planned to measure the implant temperatures for different combinations of head and cup materials during walking. This study will answer the question of whether patients with synovia with poor lubricating properties may be at risk for thermally induced bone necrosis and subsequent implant failure. The study will also deliver the different friction properties of various implant materials and prove the significance of wear simulator tests. A clinically successful titanium hip endoprosthesis was modified to house the electronics inside its hollow neck. The electronics are powered by an external induction coil fixed around the joint. A temperature sensor inside the implant triggers a timer circuit, which produces an inductive pulse train with temperature-dependent intervals. This signal is detected by a giant magnetoresistive sensor fixed near the external energy coil. The implant temperature is measured with an accuracy of 0.1°C in a range between 20°C and 58°C and at a sampling rate of 2–10 Hz. This rate could be considerably increased for measuring other data, such as implant strain or vibration. The employed technique of transmitting data from inside of a closed titanium implant by low frequency magnetic pulses eliminates the need to use an electrical feedthrough and an antenna outside of the implant. It enables the design of mechanically safe and simple instrumented implants.
Clinical Biomechanics | 2015
Verena Schwachmeyer; Ines Kutzner; Jan Bornschein; Alwina Bender; Jörn Dymke; G. Bergmann
BACKGROUND The medial knee contact force may be lowered by modified foot loading to prevent the progression of unilateral gonarthrosis but the real effects of such gait modifications are unknown. This study investigates how walking with a more medial or lateral rollover of the foot influences the in vivo measured knee contact forces. METHODS Five subjects with telemeterized knee implants walked on a treadmill with pronounced lateral or medial foot loading. Acoustic feedback of peak foot pressure was used to facilitate the weight bearing shift. The resultant contact force, Fres, the medial contact force, Fmed, and the force distribution Fmed/Fres across the tibial plateau were computed from the measured joint contact loads. FINDINGS During lateral foot loading, the two maxima of Fres during the stance phase, Peak 1 and Peak 2, increased by an average of 20% and 12%, respectively. The force distribution was changed by only -3%/+2%. As a result, Fmed increased by +16%/+17%. Medial foot loading, on the other hand, changed Fres only slightly, but decreased the distribution by -18%/-11%. This led to average reductions of Fmed by -18%/-18%. The reductions were realized by kinematic adaptations, such as increases of ankle eversion, step width and foot progression angle. INTERPRETATION Medial foot loading consistently reduced the medial knee compartment, and may be a helpful gait modification for patients with pronounced medial gonarthrosis. The increase of Fmed during lateral foot loading was most likely caused by muscular co-contractions. Long-term training may lead to more efficient gait and reduce co-contractions.
Journal of Biomechanics | 2017
William R. Taylor; Pascal Schütz; G. Bergmann; Renate List; Barbara Postolka; Marco Hitz; Jörn Dymke; Philipp Damm; Georg N. Duda; Hans Gerber; Verena Schwachmeyer; Seyyed Hamed Hosseini Nasab; Adam Trepczynski; Ines Kutzner
Combined knowledge of the functional kinematics and kinetics of the human body is critical for understanding a wide range of biomechanical processes including musculoskeletal adaptation, injury mechanics, and orthopaedic treatment outcome, but also for validation of musculoskeletal models. Until now, however, no datasets that include internal loading conditions (kinetics), synchronized with advanced kinematic analyses in multiple subjects have been available. Our goal was to provide such datasets and thereby foster a new understanding of how in vivo knee joint movement and contact forces are interlinked - and thereby impact biomechanical interpretation of any new knee replacement design. In this collaborative study, we have created unique kinematic and kinetic datasets of the lower limb musculoskeletal system for worldwide dissemination by assessing a unique cohort of 6 subjects with instrumented knee implants (Charité - Universitätsmedizin Berlin) synchronized with a moving fluoroscope (ETH Zürich) and other measurement techniques (including whole body kinematics, ground reaction forces, video data, and electromyography data) for multiple complete cycles of 5 activities of daily living. Maximal tibio-femoral joint contact forces during walking (mean peak 2.74 BW), sit-to-stand (2.73 BW), stand-to-sit (2.57 BW), squats (2.64 BW), stair descent (3.38 BW), and ramp descent (3.39 BW) were observed. Internal rotation of the tibia ranged from 3° external to 9.3° internal. The greatest range of anterio-posterior translation was measured during stair descent (medial 9.3 ± 1.0 mm, lateral 7.5 ± 1.6 mm), and the lowest during stand-to-sit (medial 4.5 ± 1.1 mm, lateral 3.7 ± 1.4 mm). The complete and comprehensive datasets will soon be made available online for public use in biomechanical and orthopaedic research and development.
Journal of Biomechanics | 2017
Philipp Damm; Jörn Dymke; Alwina Bender; Georg N. Duda; G. Bergmann
The rising prevalence of osteoarthritis and an increase in total hip replacements calls for attention to potential therapeutic activities. Cycling is considered as a low impact exercise for the hip joint and hence recommended. However, there are limited data about hip joint loading to support this claim. The aim of this study was to measure synchronously the in vivo hip joint loads and pedal forces during cycling. The in vivo hip joint loads were measured in 5 patients with instrumented hip implants. Data were collected at several combinations of power and cadence, at two saddle heights. Joint loads and pedal forces showed strong linear correlation with power. So the relationship between the external pedal forces and internal joint forces was shown. While cycling at different cadences the minimum joint loads were acquired at 60RPM. The lower saddle height configuration results in an approximately 15% increase compared to normal saddle height. The results offered new insights into the actual effects of cycling on the hip joint and can serve as useful tools while developing an optimum cycling regimen for individuals with coxarthrosis or following total hip arthroplasty. Due to the relatively low contact forces, cycling at a moderate power level of 90W at a normal saddle height is suitable for patients.
Journal of Bone and Joint Surgery-british Volume | 2017
Ines Kutzner; Alwina Bender; Jörn Dymke; Georg N. Duda; P. von Roth; G. Bergmann
Journal of Biomechanics | 2012
G. Bergmann; F. Graichen; A. Rohlmann; Jörn Dymke; Philipp Damm