Philipp Damm
Charité
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philipp Damm.
Medical Engineering & Physics | 2010
Philipp Damm; Friedmar Graichen; A. Rohlmann; Alwina Bender; G. Bergmann
A new instrumented hip joint prosthesis was developed which allows the in vivo measurement of the complete contact loads in the joint, i.e. 3 force and 3 moment components. A clinically proven standard implant was modified. Inside the hollow neck, 6 semiconductor strain gauges are applied to measure the deformation of the neck. Also integrated are a small coil for the inductive power supply and a 9-channel telemetry transmitter. The neck cavity is closed by a titanium plate and hermetically sealed by electron beam welding. The sensor signals are pulse interval modulated (PIM) with a sampling rate of about 120 Hz. The pulses are transmitted at radio frequencies via a small antenna loop inside the ceramic head, which is connected to the electronic circuit by a two-pin feedthrough. Inductive power supply, calculation of the loads from the measured deformations and real time load display are carried out by the external equipment. The maximum error of the load components is 2% including crosstalk.
Journal of Orthopaedic Research | 2011
Ines Kutzner; Philipp Damm; Bernd Heinlein; Jörn Dymke; Friedmar Graichen; G. Bergmann
A conventional method to unload the medial compartment of patients with gonarthrosis and thus to achieve pain reduction is the use of laterally wedged shoes. Our aim was to measure in vivo their effect on medial compartment loads using instrumented knee implants. Medial tibio‐femoral contact forces were measured in six subjects with instrumented knee implants during walking with the following shoes: without wedge, with 5 and 10 mm wedges under the lateral sole, and with a laterally wedged insole (5 mm). Measurements were repeated with the shoes in combination with an ankle‐stabilizing orthosis. Without orthosis, peak medial forces were reduced by only 1–4% on average. With orthosis, the average reduction was 2–7%. Highest reductions were generally observed with the 10 mm wedge, followed by the 5 mm wedge, and the 5 mm insole. Individual force reductions reached up to 15%. Medial force reductions while walking with wedged shoes were generally small. Due to high inter‐individual differences, it seems that some patients might benefit from lateral wedges, whereas others might not. Further analyses of the individual kinematics will show which factors are most decisive for the reduction of medial compartment load.
PLOS ONE | 2013
Philipp Damm; Joern Dymke; Robert Ackermann; Alwina Bender; Friedmar Graichen; Andreas Halder; Alexander Beier; G. Bergmann
Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06) at contralateral toe off to 0.06 (0.04 to 0.08) at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23) at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W). Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load.
Clinical Biomechanics | 2013
Philipp Damm; Verena Schwachmeyer; Joern Dymke; Alwina Bender; G. Bergmann
BACKGROUND Patients with osteoarthritis, joint implants or fractures use crutches in order to reduce lower limb loading. However, insufficient information exists on how much the loading is then in fact reduced. This situation was studied by using seven patients who had instrumented hip implants. METHODS Part I: To investigate the effectiveness of forearm crutches, crutch and hip joint contact forces were measured in seven patients with instrumented hip prostheses. Additionally, the bending moments in the implant neck and torsion around its stem were determined. Reductions of peak loads during 3, 4, and 2-point gaits were compared with loads present when walking without crutches. Part II: This examines joint load reduction during a 4-point gait from one to 12 weeks post-operatively. FINDINGS Part I: During a 3, 4, and 2-point gait, the joint force was 17, 12, and 13% lower than it was while walking without crutches. The corresponding reductions of the bending moment were 16, 11, and 12%, while the maximum torque decreased by 19, 21, and 10%. Part II: The reductions of contact forces in comparison with walking without crutches were highest during the first 4 weeks after surgery. One and 4 weeks post-operatively, the force maximum was 21 and 8% lower than it was after 3 months. When compared with the initial values of the 1st week, crutch forces decreased by 28% in the 4th week and by 38% in the 3rd month. INTERPRETATION Average reductions of the joint load by more than 20% are achieved only during the first 4 post-operative weeks. Because fractures are in most cases relatively stable after 6 weeks, and bone ingrowth into implant interfaces is nearly finished after this time, a single crutch and a 2-point gait can be prescribed during the 5th and 6th post-operative week.
PLOS ONE | 2012
G. Bergmann; Friedmar Graichen; Jörn Dymke; A. Rohlmann; Georg N. Duda; Philipp Damm
When walking long distances, hip prostheses heat up due to friction. The influence of articulating materials and lubricating properties of synovia on the final temperatures, as well as any potential biological consequences, are unknown. Such knowledge is essential for optimizing implant materials, identifying patients who are possibly at risk of implant loosening, and proving the concepts of current joint simulators. An instrumented hip implant with telemetric data transfer was developed to measure the implant temperatures in vivo. A clinical study with 100 patients is planned to measure the implant temperatures for different combinations of head and cup materials during walking. This study will answer the question of whether patients with synovia with poor lubricating properties may be at risk for thermally induced bone necrosis and subsequent implant failure. The study will also deliver the different friction properties of various implant materials and prove the significance of wear simulator tests. A clinically successful titanium hip endoprosthesis was modified to house the electronics inside its hollow neck. The electronics are powered by an external induction coil fixed around the joint. A temperature sensor inside the implant triggers a timer circuit, which produces an inductive pulse train with temperature-dependent intervals. This signal is detected by a giant magnetoresistive sensor fixed near the external energy coil. The implant temperature is measured with an accuracy of 0.1°C in a range between 20°C and 58°C and at a sampling rate of 2–10 Hz. This rate could be considerably increased for measuring other data, such as implant strain or vibration. The employed technique of transmitting data from inside of a closed titanium implant by low frequency magnetic pulses eliminates the need to use an electrical feedthrough and an antenna outside of the implant. It enables the design of mechanically safe and simple instrumented implants.
PLOS ONE | 2013
Verena Schwachmeyer; Philipp Damm; Alwina Bender; Joern Dymke; Friedmar Graichen; G. Bergmann
Introduction After hip surgery, it is the orthopedist’s decision to allow full weight bearing to prevent complications or to prescribe partial weight bearing for bone ingrowth or fracture consolidation. While most loading conditions in the hip joint during activities of daily living are known, it remains unclear how demanding physiotherapeutic exercises are. Recommendations for clinical rehabilitation have been established, but these guidelines vary and have not been scientifically confirmed. The aim of this study was to provide a basis for practical recommendations by determining the hip joint contact forces and moments that act during physiotherapeutic activities. Methods Joint contact loads were telemetrically measured in 6 patients using instrumented hip endoprostheses. The resultant hip contact force, the torque around the implant stem, and the bending moment in the neck were determined for 13 common physiotherapeutic exercises, classified as weight bearing, isometric, long lever arm, or dynamic exercises, and compared to the loads during walking. Results With peak values up to 441%BW, weight bearing exercises caused the highest forces among all exercises; in some patients they exceeded those during walking. During voluntary isometric contractions, the peak loads ranged widely and potentially reached high levels, depending on the intensity of the contraction. Long lever arms and dynamic exercises caused loads that were distributed around 50% of those during walking. Conclusion Weight bearing exercises should be avoided or handled cautiously within the early post-operative period. The hip joint loads during isometric exercises depend strongly on the contraction intensity. Nonetheless, most physiotherapeutic exercises seem to be non-hazardous when considering the load magnitudes, even though the loads were much higher than expected. When deciding between partial and full weight bearing, physicians should consider the loads relative to those caused by activities of daily living.
Journal of Biomechanics | 2017
Philipp Damm; Ines Kutzner; G. Bergmann; A. Rohlmann; Hendrik Schmidt
Walking is a task that we seek to understand because it is the most relevant human locomotion. Walking causes complex loading patterns and high load magnitudes within the human body. This work summarizes partially published load data collected in earlier in vivo measurement studies on 9 patients with telemeterized knee endoprostheses, 10 with hip endoprostheses and 5 with vertebral body replacements. Moreover, for the 19 endoprosthesis patients, additional simultaneously measured and previously unreported ground reaction forces are presented. The ground reaction force and the implant forces in the knee and hip exhibited a double peak during each step. The maxima of the ground reaction forces ranged from 100% to 126% bodyweight. In comparison, the greatest implant forces in the hip (249% bodyweight) and knee (271% bodyweight) were much greater. The mean peak force measured in the vertebral body replacement was 39% bodyweight and occurred at different time points of the stance phase. We concluded that walking leads to high load magnitudes in the knee and hip, whereas the forces in the vertebral body replacement remained relatively low. This indicates that the first peak force was greater in the hip than in the knee joint while this was reversed for the second peak force. The forces in the spinal implant were considerably lower than in the knee and hip joints.
PLOS ONE | 2015
Philipp Damm; Alwina Bender; G. Bergmann
Loosening of the artificial cup and inlay is the most common reasons for total hip replacement failures. Polyethylene wear and aseptic loosening are frequent reasons. Furthermore, over the past few decades, the population of patients receiving total hip replacements has become younger and more active. Hence, a higher level of activity may include an increased risk of implant loosening as a result of friction-induced wear. In this study, an instrumented hip implant was used to measure the contact forces and friction moments in vivo during walking. Subsequently, the three-dimensional coefficient of friction in vivo was calculated over the whole gait cycle. Measurements were collected from ten subjects at several time points between three and twelve months postoperative. No significant change in the average resultant contact force was observed between three and twelve months postoperative. In contrast, a significant decrease of up to 47% was observed in the friction moment. The coefficient of friction also decreased over postoperative time on average. These changes may be caused by ‘running-in’ effects of the gliding components or by the improved lubricating properties of the synovia. Because the walking velocity and contact forces were found to be nearly constant during the observed period, the decrease in friction moment suggests an increase in fluid viscosity. The peak values of the contact force individually varied by 32%-44%. The friction moment individually differed much more, by 110%-129% at three and up to 451% at twelve months postoperative. The maximum coefficient of friction showed the highest individual variability, about 100% at three and up to 914% at twelve months after surgery. These individual variations in the friction parameters were most likely due to different ‘running-in’ effects that were influenced by the individual activity levels and synovia properties.
Journal of Biomechanics | 2017
William R. Taylor; Pascal Schütz; G. Bergmann; Renate List; Barbara Postolka; Marco Hitz; Jörn Dymke; Philipp Damm; Georg N. Duda; Hans Gerber; Verena Schwachmeyer; Seyyed Hamed Hosseini Nasab; Adam Trepczynski; Ines Kutzner
Combined knowledge of the functional kinematics and kinetics of the human body is critical for understanding a wide range of biomechanical processes including musculoskeletal adaptation, injury mechanics, and orthopaedic treatment outcome, but also for validation of musculoskeletal models. Until now, however, no datasets that include internal loading conditions (kinetics), synchronized with advanced kinematic analyses in multiple subjects have been available. Our goal was to provide such datasets and thereby foster a new understanding of how in vivo knee joint movement and contact forces are interlinked - and thereby impact biomechanical interpretation of any new knee replacement design. In this collaborative study, we have created unique kinematic and kinetic datasets of the lower limb musculoskeletal system for worldwide dissemination by assessing a unique cohort of 6 subjects with instrumented knee implants (Charité - Universitätsmedizin Berlin) synchronized with a moving fluoroscope (ETH Zürich) and other measurement techniques (including whole body kinematics, ground reaction forces, video data, and electromyography data) for multiple complete cycles of 5 activities of daily living. Maximal tibio-femoral joint contact forces during walking (mean peak 2.74 BW), sit-to-stand (2.73 BW), stand-to-sit (2.57 BW), squats (2.64 BW), stair descent (3.38 BW), and ramp descent (3.39 BW) were observed. Internal rotation of the tibia ranged from 3° external to 9.3° internal. The greatest range of anterio-posterior translation was measured during stair descent (medial 9.3 ± 1.0 mm, lateral 7.5 ± 1.6 mm), and the lowest during stand-to-sit (medial 4.5 ± 1.1 mm, lateral 3.7 ± 1.4 mm). The complete and comprehensive datasets will soon be made available online for public use in biomechanical and orthopaedic research and development.
Biomedizinische Technik | 2013
Malte Asseln; Jörg Eschweiler; Philipp Damm; G. Al Hares; G. Bergmann; M. Tingart; Klaus Radermacher
Musculoskeletal loading plays an important role in the primary stability of THA. There are about 210,000 primary THA interventions p.a. in Germany. Consideration of biomechanical aspects during computer-assisted orthopaedic surgery is recommendable in order to obtain satisfactory long-term results. For this purpose simulation of the pre- and post-operative magnitude of the resultant hip joint force R and its orientation is of interest. By means of simple 2D-models (Pauwels, Debrunner, Blumentritt) or more complex 3D-models (Iglic), the magnitude and orientation of R can be computed patient-individually depending on their geometrical and anthropometrical parameters. In the context of developing a planning module for computer-assisted THA, the objective of this study was to evaluate the mathematical models. Therefore, mathematical model computations were directly compared to in-vivo measurements obtained from instrumented hip implants. With patient-specific parameters the magnitude and orientation of R were model-based computed for three patients (EBL, HSR, KWR) of the OrthoLoad-database. Their patient-specific parameters were acquired from the original patient X-rays. Subsequently, the computational results were compared with the corresponding in-vivo telemetric measurements published in the OrthoLoad-database. To obtain the maximum hip joint load, the static single-leg-stance was considered. A reference value for each patient for the maximum hip load under static conditions was calculated from OrthoLoad-data and related to the respective body weights (BW). On average there are large deviations of the results for the magnitude (O=147%) and orientation (O=14.35° too low) of R obtained by using Blumentritt9s model from the in-vivo results/measurements. The differences might be partly explained by the supplemental load of 20% BW within Blumentritt9s model which is added to the input parameter BW in order to consider dynamic gait influences. Such a dynamic supplemental load is not applied within the other static single-leg-stance models. Blumentritt9s model assumptions have to be carefully reviewed due to the deviations from the in-vivo measurement data. Iglic9s 3D-model calculates the magnitude (O17%) and the orientation (O49%) of R slightly too low. For the magnitude one explanation could be that his model considers nine individual 3D-sets of muscle origins and insertion points taken from literature. This is different from other mathematical models. The patient-individual muscle origin and insertion points should be used. Pauwels and Debrunner9s models showed the best results. They are in the same range compared to in-vivo data. Pauwels9s model calculates the magnitude (O5%) and the orientation (O28%) of R slightly higher. Debrunner9s model calculates the magnitude (O1%) and the orientation (O14%) of R slightly lower. In conclusion, for the orientation of R, all the computational results showed variations which tend to depend on the used model. There are limitations coming along with our study: as our previous studies showed, an unambiguous identification of most landmarks in an X-ray (2D) image is hardly possible. Among the study limitations there is the fact that the OrthoLoad-database currently offers only three datasets for direct comparison of static single leg stance with in-vivo measurement data of the same patient. Our ongoing work is focusing on further validation of the different mathematical models.