Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jose Carlos Valle-Casuso is active.

Publication


Featured researches published by Jose Carlos Valle-Casuso.


Cell Host & Microbe | 2013

The Retroviral Restriction Ability of SAMHD1, but Not Its Deoxynucleotide Triphosphohydrolase Activity, Is Regulated by Phosphorylation

Tommy E. White; Alberto Brandariz-Nuñez; Jose Carlos Valle-Casuso; Sarah M. Amie; Laura A. Nguyen; Baek Kim; Marina Tuzova; Felipe Diaz-Griffero

SAMHD1 is a cellular enzyme that depletes intracellular deoxynucleoside triphosphates (dNTPs) and inhibits the ability of retroviruses, notably HIV-1, to infect myeloid cells. Although SAMHD1 is expressed in both cycling and noncycling cells, the antiviral activity of SAMHD1 is limited to noncycling cells. We determined that SAMHD1 is phosphorylated on residue T592 in cycling cells but that this phosphorylation is lost when cells are in a noncycling state. Reverse genetic experiments revealed that SAMHD1 phosphorylated on residue T592 is unable to block retroviral infection, but this modification does not affect the ability of SAMHD1 to decrease cellular dNTP levels. SAMHD1 contains a target motif for cyclin-dependent kinase 1 (cdk1) ((592)TPQK(595)), and cdk1 activity is required for SAMHD1 phosphorylation. Collectively, these findings indicate that phosphorylation modulates the ability of SAMHD1 to block retroviral infection without affecting its ability to decrease cellular dNTP levels.


Retrovirology | 2012

Role of SAMHD1 nuclear localization in restriction of HIV-1 and SIVmac

Alberto Brandariz-Nuñez; Jose Carlos Valle-Casuso; Tommy E. White; Nadine Laguette; Monsef Benkirane; Jürgen Brojatsch; Felipe Diaz-Griffero

BackgroundSAMHD1 is a nuclear protein that blocks lentiviral infection before reverse transcription in macrophages and dendritic cells. The viral accessory protein Vpx overcomes the SAMHD1-mediated lentiviral block by inducing its proteasomal degradation.ResultsHere, we identified the nuclear localization signal (NLS) of SAMHD1, and studied its contribution to restriction of HIV-1 and SIVmac. By studying the cellular distribution of different SAMHD1 variants, we mapped the nuclear localization of SAMHD1 to residues 11KRPR14. Mutagenesis of these residues changed the cellular distribution of SAMHD1 from the nucleus to the cytoplasm. SAMHD1 mutants that lost nuclear localization restricted HIV-1 and SIV as potently as the wild type protein. Interestingly, SAMHD1 mutants that localized to the cytoplasm were not degraded by nuclear Vpx alleles. Therefore, nuclear Vpx alleles require nuclear localization of SAMHD1 in order to induce its degradation. In agreement, SIVmac viruses encoding Vpx did not overcome the restriction imposed by the cytoplasmic variants of SAMHD1.ConclusionsWe mapped the NLS of SAMHD1 to residues 11KRPR14 and studied the contribution of SAMHD1 nuclear localization to restriction of HIV-1 and SIV. These experiments demonstrate that cytoplasmic variants of SAMHD1 potently block lentiviral infection and are resistant to Vpx-mediated degradation. The nuclear Vpx alleles studied here are only capable of degrading a nuclearly localized SAMHD1 suggesting that Vpx-mediated degradation of SAMHD1 is initiated in the nucleus.


Virology | 2013

Contribution of SAM and HD domains to retroviral restriction mediated by human SAMHD1

Tommy E. White; Alberto Brandariz-Nuñez; Jose Carlos Valle-Casuso; Sarah M. Amie; Laura A. Nguyen; Baek Kim; Jürgen Brojatsch; Felipe Diaz-Griffero

The human SAMHD1 protein is a novel retroviral restriction factor expressed in myeloid cells. Previous work has correlated the deoxynucleotide triphosphohydrolase activity of SAMHD1 with its ability to block HIV-1 and SIV(mac) infection. SAMHD1 is comprised of the sterile alpha motif (SAM) and histidine-aspartic (HD) domains; however the contribution of these domains to retroviral restriction is not understood. Mutagenesis and deletion studies revealed that expression of the sole HD domain of SAMHD1 is sufficient to achieve potent restriction of HIV-1 and SIV(mac). We demonstrated that the HD domain of SAMHD1 is essential for the ability of SAMHD1 to oligomerize by using a biochemical assay. In agreement with previous observations, we mapped the RNA-binding ability of SAMHD1 to the HD domain. We also demonstrated a direct interaction of SAMHD1 with RNA by using enzymatically-active purified SAMHD1 protein from insect cells. Interestingly, we showed that double-stranded RNA inhibits the enzymatic activity of SAMHD1 in vitro suggesting the possibility that RNA from a pathogen might modulate the enzymatic activity of SAMHD1 in cells. By contrast, we found that the SAM domain is dispensable for retroviral restriction, oligomerization and RNA binding. Finally we tested the ability of SAMHD1 to block the infection of retroviruses other than HIV-1 and SIV(mac). These results showed that SAMHD1 blocks infection of HIV-2, feline immunodeficiency virus (FIV), bovine immunodeficiency virus (BIV), Equine infectious anemia virus (EIAV), N-tropic murine leukemia virus (N-MLV), and B-tropic murine leukemia virus (B-MLV).


Virology | 2013

Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication

Francesca Di Nunzio; Thomas Fricke; Annarita Miccio; Jose Carlos Valle-Casuso; Patricio Perez; Philippe Souque; Ermanno Rizzi; Marco Severgnini; Fulvio Mavilio; Pierre Charneau; Felipe Diaz-Griffero

The early steps of HIV-1 replication involve the entry of HIV-1 into the nucleus, which is characterized by viral interactions with nuclear pore components. HIV-1 developed an evolutionary strategy to usurp the nuclear pore machinery and chromatin in order to integrate and efficiently express viral genes. In the current work, we studied the role of nucleoporins 153 and 98 (Nup153 and Nup98) in infection of human Jurkat lymphocytes by HIV-1. We showed that Nup153-depleted cells exhibited a defect in nuclear import, while depletion of Nup 98 caused a slight defect in HIV integration. To explore the biochemical viral determinants for the requirement of Nup153 and Nup98 during HIV-1 infection, we tested the ability of these nucleoporins to interact with HIV-1 cores. Our findings showed that both nucleoporins bind HIV-1 cores suggesting that this interaction is important for HIV-1 nuclear import and/or integration. Distribution analysis of integration sites in Nup153-depleted cells revealed a reduced tendency of HIV-1 to integrate in intragenic sites, which in part could account for the large infectivity defect observed in Nup153-depleted cells. Our work strongly supports a role for Nup153 in HIV-1 nuclear import and integration.


Retrovirology | 2013

The ability of TNPO3-depleted cells to inhibit HIV-1 infection requires CPSF6.

Thomas Fricke; Jose Carlos Valle-Casuso; Tommy E. White; Alberto Brandariz-Nuñez; William J. Bosche; Natalia Reszka; Robert J. Gorelick; Felipe Diaz-Griffero

BackgroundExpression of the cellular karyopherin TNPO3/transportin-SR2/Tnp3 is necessary for HIV-1 infection. Depletion of TNPO3 expression in mammalian cells inhibits HIV-1 infection after reverse transcription but prior to integration.ResultsThis work explores the role of cleavage and polyadenylation specificity factor subunit 6 (CPSF6) in the ability of TNPO3-depleted cells to inhibit HIV-1 infection. Our findings showed that depletion of TNPO3 expression inhibits HIV-1 infection, while the simultaneous depletion of TNPO3 and CPSF6 expression rescues HIV-1 infection. Several experiments to understand the rescue of infectivity by CPSF6 were performed. Our experiments revealed that the HIV-1 capsid binding ability of the endogenously expressed CPSF6 from TNPO3-depleted cells does not change when compared to CPSF6 from wild type cells. In agreement with our previous results, depletion of TNPO3 did not change the nuclear localization of CPSF6. Studies on the formation of 2-LRT circles during HIV-1 infection revealed that TNPO3-depleted cells are impaired in the integration process or exhibit a defect in the formation of 2-LTR circles. To understand whether the cytosolic fraction of CPSF6 is responsible for the inhibition of HIV-1 in TNPO3-depleted cells, we tested the ability of a cytosolic full-length CPSF6 to block HIV-1 infection. These results demonstrated that overexpression of a cytosolic full-length CPSF6 blocks HIV-1 infection at the nuclear import step. Fate of the capsid assays revealed that cytosolic expression of CPSF6 enhances stability of the HIV-1 core during infection.ConclusionsThese results suggested that inhibition of HIV-1 by TNPO3-depleted cells requires CPSF6.


Journal of Virology | 2012

TNPO3 is Required for HIV-1 Replication After Nuclear Import but Prior to Integration and Binds the HIV-1 Core

Jose Carlos Valle-Casuso; Francesca Di Nunzio; Yang Yang; Natalia Reszka; Maritza Lienlaf; Nathalie Arhel; Patricio Perez; Abraham L. Brass; Felipe Diaz-Griffero

ABSTRACT TNPO3 is a nuclear importer required for HIV-1 infection. Here, we show that depletion of TNPO3 leads to an HIV-1 block after nuclear import but prior to integration. To investigate the mechanistic requirement of TNPO3 in HIV-1 infection, we tested the binding of TNPO3 to the HIV-1 core and found that TNPO3 binds to the HIV-1 core. Overall, this work suggests that TNPO3 interacts with the incoming HIV-1 core in the cytoplasm to assist a process that is important for HIV-1 infection after nuclear import.


Retrovirology | 2013

Contribution of oligomerization to the anti-HIV-1 properties of SAMHD1

Alberto Brandariz-Nuñez; Jose Carlos Valle-Casuso; Tommy E. White; Laura A. Nguyen; Akash Bhattacharya; Zhonghua Wang; Borries Demeler; Sarah M. Amie; Caitlin N. Knowlton; Baek Kim; Dmitri Ivanov; Felipe Diaz-Griffero

BackgroundSAMHD1 is a restriction factor that potently blocks infection by HIV-1 and other retroviruses. We have previously demonstrated that SAMHD1 oligomerizes in mammalian cells by immunoprecipitation. Here we investigated the contribution of SAMHD1 oligomerization to retroviral restriction.ResultsStructural analysis of SAMHD1 and homologous HD domain proteins revealed that key hydrophobic residues Y146, Y154, L428 and Y432 stabilize the extensive dimer interface observed in the SAMHD1 crystal structure. Full-length SAMHD1 variants Y146S/Y154S and L428S/Y432S lost their ability to oligomerize tested by immunoprecipitation in mammalian cells. In agreement with these observations, the Y146S/Y154S variant of a bacterial construct expressing the HD domain of human SAMHD1 (residues 109–626) disrupted the dGTP-dependent tetramerization of SAMHD1 in vitro. Tetramerization-defective variants of the full-length SAMHD1 immunoprecipitated from mammalian cells and of the bacterially-expressed HD domain construct lost their dNTPase activity. The nuclease activity of the HD domain construct was not perturbed by the Y146S/Y154S mutations. Remarkably, oligomerization-deficient SAMHD1 variants potently restricted HIV-1 infection.ConclusionsThese results suggested that SAMHD1 oligomerization is not required for the ability of the protein to block HIV-1 infection.


Retrovirology | 2014

BI-2 destabilizes HIV-1 cores during infection and Prevents Binding of CPSF6 to the HIV-1 Capsid

Thomas Fricke; Cindy Buffone; Silvana Opp; Jose Carlos Valle-Casuso; Felipe Diaz-Griffero

BackgroundThe recently discovered small-molecule BI-2 potently blocks HIV-1 infection. BI-2 binds to the N-terminal domain of HIV-1 capsid. BI-2 utilizes the same capsid pocket used by the small molecule PF74. Although both drugs bind to the same pocket, it has been proposed that BI-2 uses a different mechanism to block HIV-1 infection when compared to PF74.FindingsThis work demonstrates that BI-2 destabilizes the HIV-1 core during infection, and prevents the binding of the cellular factor CPSF6 to the HIV-1 core.ConclusionsOverall this short-form paper suggests that BI-2 is using a similar mechanism to the one used by PF74 to block HIV-1 infection.


Virology | 2013

Contribution of SUMO-interacting motifs and SUMOylation to the antiretroviral properties of TRIM5α

Alberto Brandariz-Nuñez; Amanda Roa; Jose Carlos Valle-Casuso; Nikolaos Biris; Dmitri Ivanov; Felipe Diaz-Griffero

Recent findings suggested that the SUMO-interacting motifs (SIMs) present in the human TRIM5α (TRIM5α(hu)) protein play an important role in the ability of TRIM5α(hu) to restrict N-MLV. Here we explored the role of SIMs in the ability of rhesus TRIM5α (TRIM5α(rh)) to restrict HIV-1, and found that TRIM5α(rh) SIM mutants IL376KK (SIM1mut) and VI405KK (SIM2mut) completely lost their ability to block HIV-1 infection. Interestingly, these mutants also lost the recently described property of TRIM5α(rh) to shuttle into the nucleus. Analysis of these variants revealed that they are unable to interact with the HIV-1 core, which might explain the reason that these variants are not active against HIV-1. Furthermore, NMR titration experiments to assay the binding between the PRYSPRY domain of TRIM5α(rh) and the small ubiquitin-like modifier 1(SUMO-1) revealed no interaction. In addition, we examined the role of SUMOylation in restriction, and find out that inhibition of SUMOylation by the adenoviral protein Gam1 did not alter the retroviral restriction ability of TRIM5α. Overall, our results do not support a role for SIMs or SUMOylation in the antiviral properties of TRIM5α.


Journal of Virology | 2017

p21 Restricts HIV-1 in Monocyte-Derived Dendritic Cells through the Reduction of Deoxynucleoside Triphosphate Biosynthesis and Regulation of SAMHD1 Antiviral Activity

Jose Carlos Valle-Casuso; Awatef Allouch; Annie David; Gina M. Lenzi; Lydia Studdard; Françoise Barré-Sinoussi; Michaela Müller-Trutwin; Baek Kim; Gianfranco Pancino; Asier Sáez-Cirión

ABSTRACT HIV-1 infection of noncycling cells, such as dendritic cells (DCs), is impaired due to limited availability of deoxynucleoside triphosphates (dNTPs), which are needed for HIV-1 reverse transcription. The levels of dNTPs are tightly regulated during the cell cycle and depend on the balance between dNTP biosynthesis and degradation. SAMHD1 potently blocks HIV-1 replication in DCs, although the underlying mechanism is still unclear. SAMHD1 has been reported to be able to degrade dNTPs and viral nucleic acids, which may both hamper HIV-1 reverse transcription. The relative contribution of these activities may differ in cycling and noncycling cells. Here, we show that inhibition of HIV-1 replication in monocyte-derived DCs (MDDCs) is associated with an increased expression of p21cip1/waf, a cell cycle regulator that is involved in the differentiation and maturation of DCs. Induction of p21 in MDDCs decreases the pool of dNTPs and increases the antiviral active isoform of SAMHD1. Although both processes are complementary in inhibiting HIV-1 replication, the antiviral activity of SAMHD1 in our primary cell model appears to be, at least partially, independent of its dNTPase activity. The reduction in the pool of dNTPs in MDDCs appears rather mostly due to a p21-mediated suppression of several enzymes involved in dNTP synthesis (i.e., RNR2, TYMS, and TK-1). These results are important to better understand the interplay between HIV-1 and DCs and may inform the design of new therapeutic approaches to decrease viral dissemination and improve immune responses against HIV-1. IMPORTANCE DCs play a key role in the induction of immune responses against HIV. However, HIV has evolved ways to exploit these cells, facilitating immune evasion and virus dissemination. We have found that the expression of p21, a cyclin-dependent kinase inhibitor involved in cell cycle regulation and monocyte differentiation and maturation, potentially can contribute to the inhibition of HIV-1 replication in monocyte-derived DCs through multiple mechanisms. p21 decreased the size of the intracellular dNTP pool. In parallel, p21 prevented SAMHD1 phosphorylation and promoted SAMHD1 dNTPase-independent antiviral activity. Thus, induction of p21 resulted in conditions that allowed the effective inhibition of HIV-1 replication through complementary mechanisms. Overall, p21 appears to be a key regulator of HIV infection in myeloid cells.

Collaboration


Dive into the Jose Carlos Valle-Casuso's collaboration.

Top Co-Authors

Avatar

Felipe Diaz-Griffero

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Alberto Brandariz-Nuñez

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tommy E. White

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Thomas Fricke

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Dmitri Ivanov

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patricio Perez

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge