Laura A. Nguyen
University of Rochester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura A. Nguyen.
Cell Host & Microbe | 2013
Tommy E. White; Alberto Brandariz-Nuñez; Jose Carlos Valle-Casuso; Sarah M. Amie; Laura A. Nguyen; Baek Kim; Marina Tuzova; Felipe Diaz-Griffero
SAMHD1 is a cellular enzyme that depletes intracellular deoxynucleoside triphosphates (dNTPs) and inhibits the ability of retroviruses, notably HIV-1, to infect myeloid cells. Although SAMHD1 is expressed in both cycling and noncycling cells, the antiviral activity of SAMHD1 is limited to noncycling cells. We determined that SAMHD1 is phosphorylated on residue T592 in cycling cells but that this phosphorylation is lost when cells are in a noncycling state. Reverse genetic experiments revealed that SAMHD1 phosphorylated on residue T592 is unable to block retroviral infection, but this modification does not affect the ability of SAMHD1 to decrease cellular dNTP levels. SAMHD1 contains a target motif for cyclin-dependent kinase 1 (cdk1) ((592)TPQK(595)), and cdk1 activity is required for SAMHD1 phosphorylation. Collectively, these findings indicate that phosphorylation modulates the ability of SAMHD1 to block retroviral infection without affecting its ability to decrease cellular dNTP levels.
Journal of Biological Chemistry | 2012
Baek Kim; Laura A. Nguyen; Waaqo Daddacha; Joseph A. Hollenbaugh
Background: SAMHD1 is a host antiviral component that regulates cellular dNTP levels. Results: We report a tight kinetic interplay between SAMHD1 level and the ability of HIV-1 to replicate in MDMs. Conclusion: Very fast kinetics of SAMHD1 degradation by Vpx is mechanistically tied with HIV-1 DNA synthesis in MDMs. Significance: The observed temporal relationship is central to better understanding HIV-1 infection in MDMs. Recently, SAMHD1 has come under intense focus as a host anti-HIV factor. SAMHD1 is a dNTP triphosphohydrolase, which leads to the regulation of DNA metabolism in host cells. HIV-2/SIV (simian immunodeficiency virus) viral protein x (Vpx) has been shown to promote the degradation of SAMHD1. In this study, we examine the kinetics of SAMHD1 degradation, the increase in the dNTP pool level, and the efficiency of proviral DNA synthesis in Vpx+ virus-like particle (VLP)-treated monocyte-derived macrophages (MDMs). Our results indicate a very close temporal link with a reduction in SAMHD1 detected within the first few hours of Vpx+ VLP treatment. This loss of SAMHD1 is followed by a significant increase in cellular dNTP levels by 8 h after Vpx+ VLP addition, ultimately leading to the enhancement of the HIV proviral DNA synthesis rate and HIV infection in MDMs. Finally, the pretreatment of MDMs with the Vpx+ VLPs, which is a widely used protocol, displayed identical proviral DNA synthesis as compared with MDMs co-treated with Vpx+ VLP and HIV vector. These findings further indicate that Vpx degradation of SAMHD1 is sufficiently rapid to enable appropriate progression of reverse transcription in MDMs, even when present at the time of infection. Overall, this study demonstrates a tight interplay between SAMHD1 level, dNTP levels, and HIV proviral DNA synthesis kinetics in MDMs.
Virology | 2013
Tommy E. White; Alberto Brandariz-Nuñez; Jose Carlos Valle-Casuso; Sarah M. Amie; Laura A. Nguyen; Baek Kim; Jürgen Brojatsch; Felipe Diaz-Griffero
The human SAMHD1 protein is a novel retroviral restriction factor expressed in myeloid cells. Previous work has correlated the deoxynucleotide triphosphohydrolase activity of SAMHD1 with its ability to block HIV-1 and SIV(mac) infection. SAMHD1 is comprised of the sterile alpha motif (SAM) and histidine-aspartic (HD) domains; however the contribution of these domains to retroviral restriction is not understood. Mutagenesis and deletion studies revealed that expression of the sole HD domain of SAMHD1 is sufficient to achieve potent restriction of HIV-1 and SIV(mac). We demonstrated that the HD domain of SAMHD1 is essential for the ability of SAMHD1 to oligomerize by using a biochemical assay. In agreement with previous observations, we mapped the RNA-binding ability of SAMHD1 to the HD domain. We also demonstrated a direct interaction of SAMHD1 with RNA by using enzymatically-active purified SAMHD1 protein from insect cells. Interestingly, we showed that double-stranded RNA inhibits the enzymatic activity of SAMHD1 in vitro suggesting the possibility that RNA from a pathogen might modulate the enzymatic activity of SAMHD1 in cells. By contrast, we found that the SAM domain is dispensable for retroviral restriction, oligomerization and RNA binding. Finally we tested the ability of SAMHD1 to block the infection of retroviruses other than HIV-1 and SIV(mac). These results showed that SAMHD1 blocks infection of HIV-2, feline immunodeficiency virus (FIV), bovine immunodeficiency virus (BIV), Equine infectious anemia virus (EIAV), N-tropic murine leukemia virus (N-MLV), and B-tropic murine leukemia virus (B-MLV).
Experimental and Molecular Pathology | 2009
Alaa Afify; Phillip R. Purnell; Laura A. Nguyen
The interaction between the transmembrane receptor CD44 on epithelial tumor cells and its ligand hyaluronan in the surrounding extracellular matrix is important in tumor progression and metastasis. CD44 is encoded by a single 20-exon gene and expressed in standard form (CD44s), as well as a myriad of CD44 variants (CD44v) generated by alternative splicing of the CD44 mRNA. Previously, we demonstrated that hyaluronan (HA) production is increased at tumor-stroma interface in invasive and metastatic human breast cancers when compared with benign or premalignant lesions. We hypothesize that CD44 expression on breast cancer cells is a major contributing factor to cell adhesion, migration and invasion. To evaluate this hypothesis we examined the effects of 3 distinct anti-CD44s and 2 anti-CD44v6 monoclonal antibodies on breast cancer cell lines that expressed high and low CD44s and CD44v6. Using these antibodies we assessed the role of CD44 in cell adhesion, cell motility, and cell invasion using immobilized HA-coated wells, wound healing assays, and modified Boyden chamber respectively. Our results showed that anti-CD44s could inhibit breast cancer cell adhesion, motility and invasion, while anti-CD44v6 inhibits cell motility. In conclusion, our data suggests that CD44s is involved in breast cancer cell adhesion, motility and invasion through interaction with HA but CD44v6 is involved only in cell motility. Furthermore we concluded that antibodies against different epitopes on CD44 mediate distinct functional effects on breast cancer cells.
Cell Reports | 2013
Raymond Behrendt; Tina Schumann; Alexander Gerbaulet; Laura A. Nguyen; Nadja Schubert; Dimitra Alexopoulou; Ursula Berka; Stefan Lienenklaus; Katrin Peschke; Kathrin Gibbert; Sabine Wittmann; Dirk Lindemann; Siegfried Weiss; Andreas Dahl; Ronald Naumann; Ulf Dittmer; Baek Kim; Werner Mueller; Thomas Gramberg; Axel Roers
SUMMARY Aicardi-Goutières syndrome (AGS), a hereditary autoimmune disease, clinically and biochemically overlaps with systemic lupus erythematosus (SLE) and, like SLE, is characterized by spontaneous type I interferon (IFN) production. The finding that defects of intracellular nucleases cause AGS led to the concept that intracellular accumulation of nucleic acids triggers inappropriate production of type I IFN and autoimmunity. AGS can also be caused by defects of SAMHD1, a 3′ exonuclease and deoxy-nucleotide (dNTP) triphosphohydrolase. Human SAMHD1 is an HIV-1 restriction factor that hydrolyzes dNTPs and decreases their concentration below the levels required for retroviral reverse transcription. We show in gene-targeted mice that also mouse SAMHD1 reduces cellular dNTP concentrations and restricts retroviral replication in lymphocytes, macrophages, and dendritic cells. Importantly, the absence of SAMHD1 triggered IFN-β-dependent transcriptional upregulation of type I IFN-inducible genes in various cell types indicative of spontaneous IFN production. SAMHD1-deficient mice may be instrumental for elucidating the mechanisms that trigger pathogenic type I IFN responses in AGS and SLE.
Journal of Biological Chemistry | 2010
Edward M. Kennedy; Christina Gavegnano; Laura A. Nguyen; Rebecca Slater; Amanda Lucas; Emilie Fromentin; Raymond F. Schinazi; Baek Kim
We biochemically simulated HIV-1 DNA polymerization in physiological nucleotide pools found in two HIV-1 target cell types: terminally differentiated/non-dividing macrophages and activated/dividing CD4+ T cells. Quantitative tandem mass spectrometry shows that macrophages harbor 22–320-fold lower dNTP concentrations and a greater disparity between ribonucleoside triphosphate (rNTP) and dNTP concentrations than dividing target cells. A biochemical simulation of HIV-1 reverse transcription revealed that rNTPs are efficiently incorporated into DNA in the macrophage but not in the T cell environment. This implies that HIV-1 incorporates rNTPs during viral replication in macrophages and also predicts that rNTP chain terminators lacking a 3′-OH should inhibit HIV-1 reverse transcription in macrophages. Indeed, 3′-deoxyadenosine inhibits HIV-1 proviral DNA synthesis in human macrophages more efficiently than in CD4+ T cells. This study reveals that the biochemical landscape of HIV-1 replication in macrophages is unique and that ribonucleoside chain terminators may be a new class of anti-HIV-1 agents specifically targeting viral macrophage infection.
Annals of the Rheumatic Diseases | 2015
Stefanie Kretschmer; Christine Wolf; Nadja König; Wolfgang Staroske; Jochen Guck; Martin Häusler; Hella Luksch; Laura A. Nguyen; Baek Kim; Dimitra Alexopoulou; Andreas Dahl; Alexander Rapp; M. Cristina Cardoso; Anna Shevchenko; Min Ae Lee-Kirsch
Objectives The HIV restriction factor, SAMHD1 (SAM domain and HD domain-containing protein 1), is a triphosphohydrolase that degrades deoxyribonucleoside triphosphates (dNTPs). Mutations in SAMHD1 cause Aicardi–Goutières syndrome (AGS), an inflammatory disorder that shares phenotypic similarity with systemic lupus erythematosus, including activation of antiviral type 1 interferon (IFN). To further define the pathomechanisms underlying autoimmunity in AGS due to SAMHD1 mutations, we investigated the physiological properties of SAMHD1. Methods Primary patient fibroblasts were examined for dNTP levels, proliferation, senescence, cell cycle progression and DNA damage. Genome-wide transcriptional profiles were generated by RNA sequencing. Interaction of SAMHD1 with cyclin A was assessed by coimmunoprecipitation and fluorescence cross-correlation spectroscopy. Cell cycle-dependent phosphorylation of SAMHD1 was examined in synchronised HeLa cells and using recombinant SAMHD1. SAMHD1 was knocked down by RNA interference. Results We show that increased dNTP pools due to SAMHD1 deficiency cause genome instability in fibroblasts of patients with AGS. Constitutive DNA damage signalling is associated with cell cycle delay, cellular senescence, and upregulation of IFN-stimulated genes. SAMHD1 is phosphorylated by cyclin A/cyclin-dependent kinase 1 in a cell cycle-dependent manner, and its level fluctuates during the cell cycle, with the lowest levels observed in G1/S phase. Knockdown of SAMHD1 by RNA interference recapitulates activation of DNA damage signalling and type 1 IFN activation. Conclusions SAMHD1 is required for genome integrity by maintaining balanced dNTP pools. dNTP imbalances due to SAMHD1 deficiency cause DNA damage, leading to intrinsic activation of IFN signalling. These findings establish a novel link between DNA damage signalling and innate immune activation in the pathogenesis of autoimmunity.
Retrovirology | 2013
Loic Dragin; Laura A. Nguyen; Hichem Lahouassa; Adèle Sourisce; Baek Kim; Bertha Cecilia Ramírez; Florence Margottin-Goguet
BackgroundInterferon-α (IFN-α) is an essential mediator of the antiviral response, which potently inhibits both early and late phases of HIV replication. The SAMHD1 deoxynucleoside triphosphate (dNTP) hydrolase represents the prototype of a new antiviral strategy we referred to as “nucleotide depletion”. SAMHD1 depletes dNTP levels in myeloid cells below those required for optimal synthesis of HIV viral DNA. HIV-2 and its SIVsm and SIVmac close relatives encode a protein termed Vpx, which counteracts SAMHD1. The potentiality of IFN-α to cooperate with nucleotide depletion has been poorly investigated so far. Here we wondered whether IFN-α affects SAMHD1 expression, Vpx-induced SAMHD1 degradation, Vpx-mediated rescue of HIV-1 transduction and the dNTP supply in monocyte-derived macrophages (MDMs).ResultsIFN-α inhibited HIV-1 transduction in monocytes and in MDMs while SAMHD1 expression was not up-regulated. Vpx triggered SAMHD1 degradation in IFN-α treated cells, and weakly restored HIV-1 transduction from the IFN-α block. Vpx helper effect towards HIV-1 transduction was gradually inhibited with increasing doses of IFN-α. dNTP levels were not significantly affected in MDMs and CD4+ primary activated T lymphocytes by IFN-α and, in correlation with SAMHD1 degradation, restoration of dNTP levels by Vpx was efficient in MDMs treated with the cytokine. In contrast, IFN-α inhibited Vpx-mediated SAMHD1 degradation in THP-1 cells, where, accordingly, Vpx could not rescue HIV-1 transduction.ConclusionOur results suggest that the early antiviral effect of IFN-α results from a mechanism independent of nucleotide depletion in MDMs. In addition, they indicate that the macrophage-like THP-1 cell line may provide a system to characterize an IFN-α-induced cell response that inhibits Vpx-mediated SAMHD1 degradation.
Retrovirology | 2013
Alberto Brandariz-Nuñez; Jose Carlos Valle-Casuso; Tommy E. White; Laura A. Nguyen; Akash Bhattacharya; Zhonghua Wang; Borries Demeler; Sarah M. Amie; Caitlin N. Knowlton; Baek Kim; Dmitri Ivanov; Felipe Diaz-Griffero
BackgroundSAMHD1 is a restriction factor that potently blocks infection by HIV-1 and other retroviruses. We have previously demonstrated that SAMHD1 oligomerizes in mammalian cells by immunoprecipitation. Here we investigated the contribution of SAMHD1 oligomerization to retroviral restriction.ResultsStructural analysis of SAMHD1 and homologous HD domain proteins revealed that key hydrophobic residues Y146, Y154, L428 and Y432 stabilize the extensive dimer interface observed in the SAMHD1 crystal structure. Full-length SAMHD1 variants Y146S/Y154S and L428S/Y432S lost their ability to oligomerize tested by immunoprecipitation in mammalian cells. In agreement with these observations, the Y146S/Y154S variant of a bacterial construct expressing the HD domain of human SAMHD1 (residues 109–626) disrupted the dGTP-dependent tetramerization of SAMHD1 in vitro. Tetramerization-defective variants of the full-length SAMHD1 immunoprecipitated from mammalian cells and of the bacterially-expressed HD domain construct lost their dNTPase activity. The nuclease activity of the HD domain construct was not perturbed by the Y146S/Y154S mutations. Remarkably, oligomerization-deficient SAMHD1 variants potently restricted HIV-1 infection.ConclusionsThese results suggested that SAMHD1 oligomerization is not required for the ability of the protein to block HIV-1 infection.
Scientific Reports | 2016
Akash Bhattacharya; Zhonghua Wang; Tommy E. White; Cindy Buffone; Laura A. Nguyen; Caitlin Shepard; Baek Kim; Borries Demeler; Felipe Diaz-Griffero; Dmitri Ivanov
SAMHD1, a dNTP triphosphohydrolase, contributes to interferon signaling and restriction of retroviral replication. SAMHD1-mediated retroviral restriction is thought to result from the depletion of cellular dNTP pools, but it remains controversial whether the dNTPase activity of SAMHD1 is sufficient for restriction. The restriction ability of SAMHD1 is regulated in cells by phosphorylation on T592. Phosphomimetic mutations of T592 are not restriction competent, but appear intact in their ability to deplete cellular dNTPs. Here we use analytical ultracentrifugation, fluorescence polarization and NMR-based enzymatic assays to investigate the impact of phosphomimetic mutations on SAMHD1 tetramerization and dNTPase activity in vitro. We find that phosphomimetic mutations affect kinetics of tetramer assembly and disassembly, but their effects on tetramerization equilibrium and dNTPase activity are insignificant. In contrast, the Y146S/Y154S dimerization-defective mutant displays a severe dNTPase defect in vitro, but is indistinguishable from WT in its ability to deplete cellular dNTP pools and to restrict HIV replication. Our data suggest that the effect of T592 phosphorylation on SAMHD1 tetramerization is not likely to explain the retroviral restriction defect, and we hypothesize that enzymatic activity of SAMHD1 is subject to additional cellular regulatory mechanisms that have not yet been recapitulated in vitro.
Collaboration
Dive into the Laura A. Nguyen's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputs