Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah M. Amie is active.

Publication


Featured researches published by Sarah M. Amie.


Cell Host & Microbe | 2013

The Retroviral Restriction Ability of SAMHD1, but Not Its Deoxynucleotide Triphosphohydrolase Activity, Is Regulated by Phosphorylation

Tommy E. White; Alberto Brandariz-Nuñez; Jose Carlos Valle-Casuso; Sarah M. Amie; Laura A. Nguyen; Baek Kim; Marina Tuzova; Felipe Diaz-Griffero

SAMHD1 is a cellular enzyme that depletes intracellular deoxynucleoside triphosphates (dNTPs) and inhibits the ability of retroviruses, notably HIV-1, to infect myeloid cells. Although SAMHD1 is expressed in both cycling and noncycling cells, the antiviral activity of SAMHD1 is limited to noncycling cells. We determined that SAMHD1 is phosphorylated on residue T592 in cycling cells but that this phosphorylation is lost when cells are in a noncycling state. Reverse genetic experiments revealed that SAMHD1 phosphorylated on residue T592 is unable to block retroviral infection, but this modification does not affect the ability of SAMHD1 to decrease cellular dNTP levels. SAMHD1 contains a target motif for cyclin-dependent kinase 1 (cdk1) ((592)TPQK(595)), and cdk1 activity is required for SAMHD1 phosphorylation. Collectively, these findings indicate that phosphorylation modulates the ability of SAMHD1 to block retroviral infection without affecting its ability to decrease cellular dNTP levels.


Retrovirology | 2012

SAMHD1 restricts HIV-1 infection in dendritic cells (DCs) by dNTP depletion, but its expression in DCs and primary CD4+T-lymphocytes cannot be upregulated by interferons

Corine St. Gelais; Suresh de Silva; Sarah M. Amie; Christopher M Coleman; Heather Hoy; Joseph A. Hollenbaugh; Baek-Jun Kim; Li-Li Wu

BackgroundSAMHD1 is an HIV-1 restriction factor in non-dividing monocytes, dendritic cells (DCs), macrophages, and resting CD4+ T-cells. Acting as a deoxynucleoside triphosphate (dNTP) triphosphohydrolase, SAMHD1 hydrolyzes dNTPs and restricts HIV-1 infection in macrophages and resting CD4+ T-cells by decreasing the intracellular dNTP pool. However, the intracellular dNTP pool in DCs and its regulation by SAMHD1 remain unclear. SAMHD1 has been reported as a type I interferon (IFN)-inducible protein, but whether type I IFNs upregulate SAMHD1 expression in primary DCs and CD4+ T-lymphocytes is unknown.ResultsHere, we report that SAMHD1 significantly blocked single-cycle and replication-competent HIV-1 infection of DCs by decreasing the intracellular dNTP pool and thereby limiting the accumulation of HIV-1 late reverse transcription products. Type I IFN treatment did not upregulate endogenous SAMHD1 expression in primary DCs or CD4+ T-lymphocytes, but did in HEK 293T and HeLa cell lines. When SAMHD1 was over-expressed in these two cell lines to achieve higher levels than that in DCs, no HIV-1 restriction was observed despite partially reducing the intracellular dNTP pool.ConclusionsOur results suggest that SAMHD1-mediated reduction of the intracellular dNTP pool in DCs is a common mechanism of HIV-1 restriction in myeloid cells. Endogenous expression of SAMHD1 in primary DCs or CD4+ T-lymphocytes is not upregulated by type I IFNs.


Virology | 2013

Contribution of SAM and HD domains to retroviral restriction mediated by human SAMHD1

Tommy E. White; Alberto Brandariz-Nuñez; Jose Carlos Valle-Casuso; Sarah M. Amie; Laura A. Nguyen; Baek Kim; Jürgen Brojatsch; Felipe Diaz-Griffero

The human SAMHD1 protein is a novel retroviral restriction factor expressed in myeloid cells. Previous work has correlated the deoxynucleotide triphosphohydrolase activity of SAMHD1 with its ability to block HIV-1 and SIV(mac) infection. SAMHD1 is comprised of the sterile alpha motif (SAM) and histidine-aspartic (HD) domains; however the contribution of these domains to retroviral restriction is not understood. Mutagenesis and deletion studies revealed that expression of the sole HD domain of SAMHD1 is sufficient to achieve potent restriction of HIV-1 and SIV(mac). We demonstrated that the HD domain of SAMHD1 is essential for the ability of SAMHD1 to oligomerize by using a biochemical assay. In agreement with previous observations, we mapped the RNA-binding ability of SAMHD1 to the HD domain. We also demonstrated a direct interaction of SAMHD1 with RNA by using enzymatically-active purified SAMHD1 protein from insect cells. Interestingly, we showed that double-stranded RNA inhibits the enzymatic activity of SAMHD1 in vitro suggesting the possibility that RNA from a pathogen might modulate the enzymatic activity of SAMHD1 in cells. By contrast, we found that the SAM domain is dispensable for retroviral restriction, oligomerization and RNA binding. Finally we tested the ability of SAMHD1 to block the infection of retroviruses other than HIV-1 and SIV(mac). These results showed that SAMHD1 blocks infection of HIV-2, feline immunodeficiency virus (FIV), bovine immunodeficiency virus (BIV), Equine infectious anemia virus (EIAV), N-tropic murine leukemia virus (N-MLV), and B-tropic murine leukemia virus (B-MLV).


PLOS Pathogens | 2013

Host Factor SAMHD1 Restricts DNA Viruses in Non- Dividing Myeloid Cells

Joseph A. Hollenbaugh; Peter Gee; Jonathon Baker; Michele B. Daly; Sarah M. Amie; Jessica Tate; Natsumi Kasai; Yuka Kanemura; Dong-Hyun Kim; Brian M. Ward; Yoshio Koyanagi; Baek Kim

SAMHD1 is a newly identified anti-HIV host factor that has a dNTP triphosphohydrolase activity and depletes intracellular dNTP pools in non-dividing myeloid cells. Since DNA viruses utilize cellular dNTPs, we investigated whether SAMHD1 limits the replication of DNA viruses in non-dividing myeloid target cells. Indeed, two double stranded DNA viruses, vaccinia and herpes simplex virus type 1, are subject to SAMHD1 restriction in non-dividing target cells in a dNTP dependent manner. Using a thymidine kinase deficient strain of vaccinia virus, we demonstrate a greater restriction of viral replication in non-dividing cells expressing SAMHD1. Therefore, this study suggests that SAMHD1 is a potential innate anti-viral player that suppresses the replication of a wide range of DNA viruses, as well as retroviruses, which infect non-dividing myeloid cells.


Proceedings of the National Academy of Sciences of the United States of America | 2013

p21-mediated RNR2 repression restricts HIV-1 replication in macrophages by inhibiting dNTP biosynthesis pathway

Awatef Allouch; Annie David; Sarah M. Amie; Hichem Lahouassa; Loïc Chartier; Florence Margottin-Goguet; Françoise Barré-Sinoussi; Baek Kim; Asier Sáez-Cirión; Gianfranco Pancino

Significance Macrophages, with CD4+ T lymphocytes, are a major cell target for HIV-1 infection. We have previously reported that the induction of a cellular protein, the cyclin-dependent kinase p21, inhibits HIV-1 replication in macrophages. We now show that p21 impairs the reverse transcription of HIV-1 and other primate lentiviruses, including the simian immunodeficiency virus (SIV)mac, by blocking the synthesis of cellular deoxynucleotides (dNTP) that are used by retroviral reverse transcriptase for viral DNA synthesis. p21 represses the expression of a key enzyme of the dNTP biosynthesis pathway, the RNR2 subunit of the ribonucleotide reductase. Our findings point to new potential cellular targets for antiretroviral strategies. Macrophages are a major target cell for HIV-1, and their infection contributes to HIV pathogenesis. We have previously shown that the cyclin-dependent kinase inhibitor p21 inhibits the replication of HIV-1 and other primate lentiviruses in human monocyte-derived macrophages by impairing reverse transcription of the viral genome. In the attempt to understand the p21-mediated restriction mechanisms, we found that p21 impairs HIV-1 and simian immunodeficiency virus (SIV)mac reverse transcription in macrophages by reducing the intracellular deoxyribonucleotide (dNTP) pool to levels below those required for viral cDNA synthesis by a SAM domain and HD domain-containing protein 1 (SAMHD1)-independent pathway. We found that p21 blocks dNTP biosynthesis by down-regulating the expression of the RNR2 subunit of ribonucleotide reductase, an enzyme essential for the reduction of ribonucleotides to dNTP. p21 inhibits RNR2 transcription by repressing E2F1 transcription factor, its transcriptional activator. Our findings unravel a cellular pathway that restricts HIV-1 and other primate lentiviruses by affecting dNTP synthesis, thereby pointing to new potential cellular targets for anti-HIV therapeutic strategies.


Virology | 2013

Intracellular nucleotide levels and the control of retroviral infections

Sarah M. Amie; Erin Noble; Baek Kim

Retroviruses consume cellular deoxynucleoside triphosphates (dNTPs) to convert their RNA genomes into proviral DNA through reverse transcription. While all retroviruses replicate in dividing cells, lentiviruses uniquely replicate in nondividing cells such as macrophages. Importantly, dNTP levels in nondividing cells are extremely low, compared to dividing cells. Indeed, a recently discovered anti-HIV/SIV restriction factor, SAMHD1, which is a dNTP triphosphohydrolase, is responsible for the limited dNTP pool of nondividing cells. Lentiviral reverse transcriptases (RT) uniquely stay functional even at the low dNTP concentrations in nondividing cells. Interestingly, Vpx of HIV-2/SIVsm proteosomally degrades SAMHD1, which elevates cellular dNTP pools and accelerates lentiviral replication in nondividing cells. These Vpx-encoding lentiviruses rapidly replicate in nondividing cells by encoding both highly functional RTs and Vpx. Here, we discuss a series of mechanistic and virological studies that have contributed to conceptually linking cellular dNTP levels and the adaptation of lentiviral replication in nondividing cells.


Journal of Biological Chemistry | 2013

GTP Is the Primary Activator of the Anti-HIV Restriction Factor SAMHD1

Sarah M. Amie; Robert A. Bambara; Baek Kim

Background: dGTP allosterically activates SAMHD1. Results: GTP can also efficiently activate SAMHD1. Conclusion: The cellular concentration of GTP is much higher than that of dGTP, and GTP can activate SAMHD1 to the same extent. Therefore, GTP may serve as a primary activator of SAMHD1. Significance: Activator availability does not limit SAMHD1 phosphohydrolase activity because, unlike dGTP, GTP is not hydrolyzed by SAMHD1. SAMHD1 (SAM domain- and HD domain-containing protein 1) is a dGTP-dependent dNTP triphosphohydrolase that converts dNTPs into deoxyribonucleosides and triphosphates. Therefore, SAMHD1 expression, particularly in non-dividing cells, can restrict retroviral infections such as HIV and simian immunodeficiency virus by limiting cellular dNTPs, which are essential for reverse transcription. It has previously been established that dGTP acts as both an activator and a substrate of this enzyme, suggesting that phosphohydrolase activity of SAMHD1 is regulated by dGTP availability in the cell. However, we now demonstrate biochemically that the NTP GTP is equally capable of activating SAMHD1, but GTP is not hydrolyzed by the enzyme. Activation of SAMHD1 phosphohydrolase activity was tested under physiological concentrations of dGTP or GTP found in either dividing or non-dividing cells. Because GTP is 1000-fold more abundant than dGTP in cells, GTP was able to activate the enzyme to a greater extent than dGTP, suggesting that GTP is the primary activator of SAMHD1. Finally, we show that SAMHD1 has the ability to hydrolyze base-modified nucleotides, indicating that the active site of SAMHD1 is not restrictive to such modifications, and is capable of regulating the levels of non-canonical dNTPs such as dUTP. This study provides further insights into the regulation of SAMHD1 with regard to allosteric activation and active site specificity.


Retrovirology | 2013

Evidence for IFNα-induced, SAMHD1-independent inhibitors of early HIV-1 infection

Caroline Goujon; Torsten Schaller; Rui Pedro Galao Ribeiro Galao; Sarah M. Amie; Baek Kim; Kevin Olivieri; Stuart J. D. Neil; Michael H. Malim

BackgroundType I interferon (IFN) treatment of some cells, including dendritic cells, macrophages and monocytic THP-1 cells, restricts HIV-1 infection and prevents viral cDNA accumulation. Sterile alpha motif and HD domain protein 1 (SAMHD1), a dGTP-regulated deoxynucleotide triphosphohydrolase, reduces HIV-1 infectivity in myeloid cells, likely by limiting dNTPs available for reverse transcription, and has been described as IFNα-inducible. Myeloid cell infection by HIV-1 is enhanced by HIV-2/SIVSM Vpx, which promotes SAMHD1 degradation, or by exogenous deoxyribonucleoside (dN) addition.FindingsSAMHD1 expression was not substantially influenced by IFNα treatment of monocyte-derived macrophages or THP-1 cells. The contributions of SAMHD1 to the inhibition of HIV-1 infectivity by IFNα were assessed through the provision of Vpx, exogenous dN addition, or via RNAi-mediated SAMHD1 knock-down. Both Vpx and dN efficiently restored infection in IFNα-treated macrophages, albeit not to the levels seen with these treatments in the absence of IFNα. Similarly using differentiated THP-1 cells, the addition of Vpx or dNs, or SAMHD1 knock-down, also stimulated infection, but failing to match the levels observed without IFNα. Neither Vpx addition nor SAMHD1 knock-down reversed the IFNα-induced blocks to HIV-1 infection seen in dividing U87-MG or THP-1 cells. Therefore, altered SAMHD1 expression or function cannot account for the IFNα-induced restriction to HIV-1 infection seen in many cells and cell lines.ConclusionIFNα establishes an anti-HIV-1 phenotype in many cell types, and appears to accomplish this without potentiating SAMHD1 function. We conclude that additional IFNα-induced suppressors of the early stages of HIV-1 infection await identification.


Journal of Biological Chemistry | 2013

Anti-HIV Host Factor SAMHD1 Regulates Viral Sensitivity to Nucleoside Reverse Transcriptase Inhibitors via Modulation of Cellular Deoxyribonucleoside Triphosphate (dNTP) Levels

Sarah M. Amie; Michele B. Daly; Erin Noble; Raymond F. Schinazi; Robert A. Bambara; Baek Kim

Background: SAMHD1 is an enzyme that maintains low dNTP concentrations in macrophages. Results: Depletion of SAMHD1 decreases HIV-1 sensitivity to nucleoside reverse transcriptase inhibitors (NRTIs) in macrophages, but does not significantly alter sensitivity in T cells. Conclusion: SAMHD1 expression levels in macrophages directly impact the efficacy of NRTIs by modulating cellular dNTP concentrations. Significance: SAMHD1 controls HIV-1 sensitivity to NRTIs. Newly identified anti-HIV host factor, SAMHD1, restricts replication of lentiviruses such as HIV-1, HIV-2, and simian immunodeficiency virus in macrophages by enzymatically hydrolyzing and depleting cellular dNTPs, which are the substrates of viral DNA polymerases. HIV-2 and some simian immunodeficiency viruses express viral protein X (VPX), which counteracts SAMHD1 and elevates cellular dNTPs, enhancing viral replication in macrophages. Because nucleoside reverse transcriptase inhibitors (NRTIs), the most commonly used anti-HIV drugs, compete against cellular dNTPs for incorporation into proviral DNA, we tested whether SAMHD1 directly affects the efficacy of NRTIs in inhibiting HIV-1. We found that reduction of SAMHD1 levels with the use of virus-like particles expressing Vpx- and SAMHD1-specific shRNA subsequently elevates cellular dNTPs and significantly decreases HIV-1 sensitivity to various NRTIs in macrophages. However, virus-like particles +Vpx treatment of activated CD4+ T cells only minimally reduced NRTI efficacy. Furthermore, with the use of HPLC, we could not detect SAMHD1-mediated hydrolysis of NRTI-triphosphates, verifying that the reduced sensitivity of HIV-1 to NRTIs upon SAMHD1 degradation is most likely caused by the elevation in cellular dNTPs.


Journal of Biological Chemistry | 2012

Frequent Incorporation of Ribonucleotides during HIV-1 Reverse Transcription and Their Attenuated Repair in Macrophages

Edward M. Kennedy; Sarah M. Amie; Robert A. Bambara; Baek Kim

Background: dNTPs are exceptionally low in nondividing macrophages, which promotes incorporation of rNMPs into HIV-1 DNA. Results: We quantify the frequency of rNMP incorporation into viral DNA and their repair in macrophages and CD4+ T cells. Conclusion: Abundant monoribonucleotides are incorporated into HIV-1 DNA in macrophages, wherein repair is attenuated. Significance: Monoribonucleotides in DNA have implications for HIV-1 mutagenesis and therapy in macrophages. Macrophages are well known long-lived reservoirs of HIV-1. Unlike activated CD4+ T cells, this nondividing HIV-1 target cell type contains a very low level of the deoxynucleoside triphosphates (dNTPs) required for proviral DNA synthesis whereas the ribonucleoside triphosphate (rNTP) levels remain in the millimolar range, resulting in an extremely low dNTP/rNTP ratio. Biochemical simulations demonstrate that HIV-1 reverse transcriptase (RT) efficiently incorporates ribonucleoside monophosphates (rNMPs) during DNA synthesis at this ratio, predicting frequent rNMP incorporation by the virus specifically in macrophages. Indeed, HIV-1 RT incorporates rNMPs at a remarkable rate of 1/146 nucleotides during macrophage infection. This greatly exceeds known rates for cellular replicative polymerases. In contrast, little or no rNMP incorporation is detected in CD4+ T cells. Repair of these rNMP lesions is also substantially delayed in macrophages compared with CD4+ T cells. Single rNMPs embedded in a DNA template are known to induce cellular DNA polymerase pausing, which mechanistically contributes to mutation synthesis. Indeed, we also observed that embedded rNMPs in a dsDNA template also induce HIV-1 RT DNA synthesis pausing. Moreover, unrepaired rNMPs incorporated into the provirus during HIV-1 reverse transcription would be generally mutagenic as was shown in Saccharomyces cerevisiae. Most importantly, the frequent incorporation of rNMPs makes them an ideal candidate for development of a new class of HIV RT inhibitors.

Collaboration


Dive into the Sarah M. Amie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alberto Brandariz-Nuñez

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Felipe Diaz-Griffero

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jose Carlos Valle-Casuso

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tommy E. White

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge