Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua D. Wood is active.

Publication


Featured researches published by Joshua D. Wood.


Nano Letters | 2014

Effective passivation of exfoliated black phosphorus transistors against ambient degradation.

Joshua D. Wood; Spencer A. Wells; Deep Jariwala; Kan Sheng Chen; Eunkyung Cho; Vinod K. Sangwan; Xiaolong Liu; Lincoln J. Lauhon; Tobin J. Marks; Mark C. Hersam

Unencapsulated, exfoliated black phosphorus (BP) flakes are found to chemically degrade upon exposure to ambient conditions. Atomic force microscopy, electrostatic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy are employed to characterize the structure and chemistry of the degradation process, suggesting that O2 saturated H2O irreversibly reacts with BP to form oxidized phosphorus species. This interpretation is further supported by the observation that BP degradation occurs more rapidly on hydrophobic octadecyltrichlorosilane self-assembled monolayers and on H-Si(111) versus hydrophilic SiO2. For unencapsulated BP field-effect transistors, the ambient degradation causes large increases in threshold voltage after 6 h in ambient, followed by a ∼ 10(3) decrease in FET current on/off ratio and mobility after 48 h. Atomic layer deposited AlOx overlayers effectively suppress ambient degradation, allowing encapsulated BP FETs to maintain high on/off ratios of ∼ 10(3) and mobilities of ∼ 100 cm(2) V(-1) s(-1) for over 2 weeks in ambient conditions. This work shows that the ambient degradation of BP can be managed effectively when the flakes are sufficiently passivated. In turn, our strategy for enhancing BP environmental stability will accelerate efforts to implement BP in electronic and optoelectronic applications.


Science | 2015

Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs

Andrew J. Mannix; Xiang-Feng Zhou; Brian Kiraly; Joshua D. Wood; Diego Alducin; Benjamin D. Myers; Xiaolong Liu; Brandon Fisher; Ulises Santiago; Jeffrey R. Guest; Miguel José Yacamán; Arturo Ponce; Artem R. Oganov; Mark C. Hersam; Nathan P. Guisinger

Borophene: Boron in two dimensions Although bulk allotropes of carbon and boron differ greatly, small clusters of these elements show remarkable similarities. Boron analogs of two-dimensional carbon allotropes such as graphene have been predicted. Now Mannix et al. report the formation of two-dimensional boron by depositing the elemental boron onto a silver surface under ultrahigh-vacuum conditions (see the Perspective by Sachdev). The graphene-like structure was buckled, weakly bonded to the substrate, and metallic. Science, this issue p. 1513; see also p. 1468 A two-dimensional boron allotrope forms after depositing its elemental vapor on a silver surface in vacuum. [Also see Perspective by Sachdev] At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.


Nano Letters | 2011

Effects of Polycrystalline Cu Substrate on Graphene Growth by Chemical Vapor Deposition

Joshua D. Wood; Scott W. Schmucker; Austin S. Lyons; Eric Pop; Joseph W. Lyding

Chemical vapor deposition of graphene on Cu often employs polycrystalline Cu substrates with diverse facets, grain boundaries (GBs), annealing twins, and rough sites. Using scanning electron microscopy (SEM), electron-backscatter diffraction (EBSD), and Raman spectroscopy on graphene and Cu, we find that Cu substrate crystallography affects graphene growth more than facet roughness. We determine that (111) containing facets produce pristine monolayer graphene with higher growth rate than (100) containing facets, especially Cu(100). The number of graphene defects and nucleation sites appears Cu facet invariant at growth temperatures above 900 °C. Engineering Cu to have (111) surfaces will cause monolayer, uniform graphene growth.


ACS Nano | 2015

Solvent Exfoliation of Electronic-Grade, Two-Dimensional Black Phosphorus

Joohoon Kang; Joshua D. Wood; Spencer A. Wells; Jae Hyeok Lee; Xiaolong Liu; Kan Sheng Chen; Mark C. Hersam

Solution dispersions of two-dimensional (2D) black phosphorus (BP)--often referred to as phosphorene--are achieved by solvent exfoliation. These pristine, electronic-grade BP dispersions are produced with anhydrous organic solvents in a sealed-tip ultrasonication system, which circumvents BP degradation that would otherwise occur via solvated O2 or H2O. Among conventional solvents, N-methylpyrrolidone (NMP) is found to provide stable, highly concentrated (∼0.4 mg/mL) BP dispersions. Atomic force microscopy, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy show that the structure and chemistry of solvent-exfoliated BP nanosheets are comparable to mechanically exfoliated BP flakes. Additionally, residual NMP from the liquid-phase processing suppresses the rate of BP oxidation in ambient conditions. Solvent-exfoliated BP nanosheet field-effect transistors exhibit ambipolar behavior with current on/off ratios and mobilities up to ∼10(4) and ∼50 cm(2) V(-1) s(-1), respectively. Overall, this study shows that stable, highly concentrated, electronic-grade 2D BP dispersions can be realized by scalable solvent exfoliation, thereby presenting opportunities for large-area, high-performance BP device applications.


Nature Chemistry | 2016

Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry

Christopher R. Ryder; Joshua D. Wood; Spencer A. Wells; Yang Yang; Deep Jariwala; Tobin J. Marks; George C. Schatz; Mark C. Hersam

Functionalization of atomically thin nanomaterials enables the tailoring of their chemical, optical and electronic properties. Exfoliated black phosphorus (BP)-a layered two-dimensional semiconductor-exhibits favourable charge-carrier mobility, tunable bandgap and highly anisotropic properties, but it is chemically reactive and degrades rapidly in ambient conditions. Here we show that covalent aryl diazonium functionalization suppresses the chemical degradation of exfoliated BP even after three weeks of ambient exposure. This chemical modification scheme spontaneously forms phosphorus-carbon bonds, has a reaction rate sensitive to the aryl diazonium substituent and alters the electronic properties of exfoliated BP, ultimately yielding a strong, tunable p-type doping that simultaneously improves the field-effect transistor mobility and on/off current ratio. This chemical functionalization pathway controllably modifies the properties of exfoliated BP, and thus improves its prospects for nanoelectronic applications.


ACS Nano | 2013

Atomic-scale evidence for potential barriers and strong carrier scattering at graphene grain boundaries: a scanning tunneling microscopy study.

Justin Koepke; Joshua D. Wood; David Estrada; Zhun Yong Ong; Kevin T. He; Eric Pop; Joseph W. Lyding

We use scanning tunneling microscopy and spectroscopy to examine the electronic nature of grain boundaries (GBs) in polycrystalline graphene grown by chemical vapor deposition (CVD) on Cu foil and transferred to SiO(2) substrates. We find no preferential orientation angle between grains, and the GBs are continuous across graphene wrinkles and SiO(2) topography. Scanning tunneling spectroscopy shows enhanced empty states tunneling conductance for most of the GBs and a shift toward more n-type behavior compared to the bulk of the graphene. We also observe standing wave patterns adjacent to GBs propagating in a zigzag direction with a decay length of ~1 nm. Fourier analysis of these patterns indicates that backscattering and intervalley scattering are the dominant mechanisms responsible for the mobility reduction in the presence of GBs in CVD-grown graphene.


Journal of Physical Chemistry Letters | 2015

In Situ Thermal Decomposition of Exfoliated Two-Dimensional Black Phosphorus

Xiaolong Liu; Joshua D. Wood; Kan Sheng Chen; Eunkyung Cho; Mark C. Hersam

With a semiconducting band gap and high charge carrier mobility, two-dimensional (2D) black phosphorus (BP)—often referred to as phosphorene—holds significant promise for next generation electronics and optoelectronics. However, as a 2D material, it possesses a higher surface area to volume ratio than bulk BP, suggesting that its chemical and thermal stability will be modified. Herein, an atomic-scale microscopic and spectroscopic study is performed to characterize the thermal degradation of mechanically exfoliated 2D BP. From in situ scanning/transmission electron microscopy, decomposition of 2D BP is observed to occur at ∼400 °C in vacuum, in contrast to the 550 °C bulk BP sublimation temperature. This decomposition initiates via eye-shaped cracks along the [001] direction and then continues until only a thin, amorphous red phosphorus like skeleton remains. In situ electron energy loss spectroscopy, energy-dispersive X-ray spectroscopy, and energy-loss near-edge structure changes provide quantitative insight into this chemical transformation process.


ACS Nano | 2016

Chemically Tailoring Semiconducting Two-Dimensional Transition Metal Dichalcogenides and Black Phosphorus

Christopher R. Ryder; Joshua D. Wood; Spencer A. Wells; Mark C. Hersam

Two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDCs) and black phosphorus (BP) have beneficial electronic, optical, and physical properties at the few-layer limit. As atomically thin materials, 2D TMDCs and BP are highly sensitive to their environment and chemical modification, resulting in a strong dependence of their properties on substrate effects, intrinsic defects, and extrinsic adsorbates. Furthermore, the integration of 2D semiconductors into electronic and optoelectronic devices introduces unique challenges at metal-semiconductor and dielectric-semiconductor interfaces. Here, we review emerging efforts to understand and exploit chemical effects to influence the properties of 2D TMDCs and BP. In some cases, surface chemistry leads to significant degradation, thus necessitating the development of robust passivation schemes. On the other hand, appropriately designed chemical modification can be used to beneficially tailor electronic properties, such as controlling doping levels and charge carrier concentrations. Overall, chemical methods allow substantial tunability of the properties of 2D TMDCs and BP, thereby enabling significant future opportunities to optimize performance for device applications.


Nano Letters | 2012

Scanning Tunneling Microscopy Study and Nanomanipulation of Graphene-Coated Water on Mica

Kevin T. He; Joshua D. Wood; Gregory P. Doidge; Eric Pop; Joseph W. Lyding

We study interfacial water trapped between a sheet of graphene and a muscovite (mica) surface using Raman spectroscopy and ultrahigh vacuum scanning tunneling microscopy (UHV-STM) at room temperature. We are able to image the graphene-water interface with atomic resolution, revealing a layered network of water trapped underneath the graphene. We identify water layer numbers with a carbon nanotube height reference. Under normal scanning conditions, the water structures remain stable. However, at greater electron energies, we are able to locally manipulate the water using the STM tip.


Advanced Materials | 2015

Anisotropic Thermal Conductivity of Exfoliated Black Phosphorus.

Hyejin Jang; Joshua D. Wood; Christopher R. Ryder; Mark C. Hersam; David G. Cahill

The anisotropic thermal conductivity of passivated black phosphorus (BP), a reactive two-dimensional material with strong in-plane anisotropy, is ascertained. The room-temperature thermal conductivity for three crystalline axes of exfoliated BP is measured by time-domain thermo-reflectance. The thermal conductivity along the zigzag direction is ≈2.5 times higher than that of the armchair direction.

Collaboration


Dive into the Joshua D. Wood's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaolong Liu

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joohoon Kang

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey R. Guest

Argonne National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge