Joshua Friedrich
IBM
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joshua Friedrich.
international solid-state circuits conference | 2007
Joshua Friedrich; Bradley McCredie; Norman K. James; Bill Huott; Brian W. Curran; Eric Fluhr; Gaurav Mittal; Eddie K. Chan; Yuen H. Chan; Donald W. Plass; Sam Gat-Shang Chu; Hung Q. Le; Leo James Clark; John R. Ripley; Scott A. Taylor; Jack DiLullo; Mary Yvonne Lanzerotti
The POWER6trade microprocessor combines ultra-high frequency operation, aggressive power reduction, a highly scalable memory subsystem, and mainframe-like reliability, availability, and serviceability. The 341mm2 700M transistor dual-core microprocessor is fabricated in a 65nm SOI process with 10 levels of low-k copper interconnect. It operates at clock frequencies over 5GHz in high-performance applications, and consumes under 100W in power-sensitive applications.
international solid-state circuits conference | 2007
Norman K. James; Phillip J. Restle; Joshua Friedrich; Bill Huott; Bradley McCredie
The POWER6trade is a dual-core microprocessor fabricated in a 65nm SOI process with 10 levels of low-k copper interconnects. Chips with split- and connected-core power supplies are fabricated, modeled, and tested, showing both the advantages and disadvantages of each. On-chip noise measurements are compared to simulation. The noise measurements and simulation both show that the shorted core power grid design has less noise and a higher maximum frequency.
international solid-state circuits conference | 2010
Dieter Wendel; Ronald Nick Kalla; Robert Cargoni; Joachim Clables; Joshua Friedrich; Roland Frech; James Allan Kahle; Balaram Sinharoy; William J. Starke; Scott A. Taylor; Steve Weitzel; Sam Gat-Shang Chu; Saiful Islam; Victor Zyuban
The next processor of the POWER ™ family, called POWER7™ is introduced. Eight quad-threaded cores are integrated together with two memory controllers and high-speed system links on a 567mm2 die, employing 1.2B transistors in 45nm CMOS SOI technology [4]. High on-chip performance and therefore bandwidth is achieved using 11 layers of low-к copper wiring and devices with enhanced dual-stress liners. The technology features deep trench [DT] capacitors that are used to build the 32MB embedded DRAM L3 based on a 0.067µm2 DRAM cell. DT capacitors are used also to reduce on-chip voltage-island supply noise. Focusing on speed, the dual-supply ripple-domino SRAM concepts follows the schemes described elsewhere.
international solid-state circuits conference | 2014
Zeynep Toprak-Deniz; Michael A. Sperling; John F. Bulzacchelli; Gregory Scott Still; Ryan Kruse; Seongwon Kim; David William Boerstler; Tilman Gloekler; Raphael Robertazzi; Kevin Stawiasz; Timothy Diemoz; George English; David T. Hui; Paul Muench; Joshua Friedrich
Integrated voltage regulator modules (iVRMs) [1] provide a cost-effective path to realizing per-core dynamic voltage and frequency scaling (DVFS), which can be used to optimize the performance of a power-constrained multi-core processor. This paper presents an iVRM system developed for the POWER8™ microprocessor, which functions as a very fast, accurate low-dropout regulator (LDO), with 90.5% peak power efficiency (only 3.1% worse than an ideal LDO). At low output voltages, efficiency is reduced but still sufficient to realize beneficial energy savings with DVFS. Each iVRM features a bypass mode so that some of the cores can be operated at maximum performance with no regulator loss. With the iVRM area including the input decoupling capacitance (DCAP) (but not the output DCAP inherent to the cores), the iVRMs achieve a power density of 34.5W/mm2, which exceeds that of inductor-based or SC converters by at least 3.4× [2].
IEEE Journal of Solid-state Circuits | 2011
Dieter Wendel; R Kalla; James D. Warnock; R. Cargnoni; S G Chu; J G Clabes; Daniel M. Dreps; D. Hrusecky; Joshua Friedrich; Saiful Islam; J Kahle; Jens Leenstra; Gaurav Mittal; Jose Angel Paredes; Jürgen Pille; Phillip J. Restle; Balaram Sinharoy; G Smith; W J Starke; S Taylor; J. A. Van Norstrand; Stephen Douglas Weitzel; P G Williams; Victor Zyuban
This paper gives an overview of the latest member of the POWER™ processor family, POWER7™. Eight quad-threaded cores, operating at frequencies up to 4.14 GHz, are integrated together with two memory controllers and high speed system links on a 567 mm die, employing 1.2B transistors in a 45 nm CMOS SOI technology with 11 layers of low-k copper wiring. The technology features deep trench capacitors which are used to build a 32 MB embedded DRAM L3 based on a 0.067 m DRAM cell. The functionally equivalent chip transistor count would have been over 2.7B if the L3 had been implemented with a conventional 6 transistor SRAM cell. (A detailed paper about the eDRAM implementation will be given in a separate paper of this Journal). Deep trench capacitors are also used to reduce on-chip voltage island supply noise. This paper describes the organization of the design and the features of the processor core, before moving on to discuss the circuits used for analog elements, clock generation and distribution, and I/O designs. The final section describes the details of the clocked storage elements, including special features for test, debug, and chip frequency tuning.
IEEE Journal of Solid-state Circuits | 2015
Eric Fluhr; Steve Baumgartner; David William Boerstler; John F. Bulzacchelli; Timothy Diemoz; Daniel M. Dreps; George English; Joshua Friedrich; Anne E. Gattiker; Tilman Gloekler; Christopher J. Gonzalez; Jason D. Hibbeler; Keith A. Jenkins; Yong Kim; Paul Muench; Ryan Nett; Jose Angel Paredes; Juergen Pille; Donald W. Plass; Phillip J. Restle; Raphael Robertazzi; David Shan; David W. Siljenberg; Michael A. Sperling; Kevin Stawiasz; Gregory Scott Still; Zeynep Toprak-Deniz; James D. Warnock; Glen A. Wiedemeier; Victor Zyuban
POWER8™ is a 12-core processor fabricated in IBMs 22 nm SOI technology with core and cache improvements driven by big data applications, providing 2.5× socket performance over POWER7+™. Core throughput is supported by 7.6 Tb/s of off-chip I/O bandwidth which is provided by three primary interfaces, including two new variants of Elastic Interface as well as embedded PCI Gen-3. Power efficiency is improved with several techniques. An on-chip controller based on an embedded PowerPC™ 405 processor applies per-core DVFS by adjusting DPLLs and fully integrated voltage regulators. Each voltage regulator is a highly distributed system of digitally controlled microregulators, which achieves a peak power efficiency of 90.5%. A wide frequency range resonant clock design is used in 13 clock meshes and demonstrates a minimum power savings of 4%. Power and delay efficiency is achieved through the use of pulsed-clock latches, which require statistical validation to ensure robust yield.
international solid-state circuits conference | 2010
James D. Warnock; Leon J. Sigal; Dieter Wendel; K. Paul Muller; Joshua Friedrich; Victor Zyuban; Ethan H. Cannon; Aj Kleinosowski
The design of the clocked storage elements (CSEs) and associated local clocking circuitry is a critical consideration for modern microprocessor projects[1], and the POWER7™ chip[2], designed in a 45nm silicon-on-insulator (SOI) technology, was no exception. The digital logic contained over 2M CSEs, and the design of these elements had a major impact not only on the area, power, and performance of the chip, but also on the reliability, testability, and the ability to debug and optimize the hardware. This paper will focus on the special features added to the CSE design with these considerations in mind.
Ibm Journal of Research and Development | 2011
Victor Zyuban; Joshua Friedrich; Christopher J. Gonzalez; R. Rao; M. D. Brown; M. M. Ziegler; Hans M. Jacobson; Saiful Islam; S. Chu; P. Kartschoke; Giovanni Fiorenza; M. Boersma; J. A. Culp
Meeting the power budget of the 8 four-way simultaneous multithreading core IBM POWER7® microprocessor without compromising the aggressive performance targets presented a considerable challenge to the design team. Major innovations in the power modeling and power reduction methodologies have been introduced at all levels of the design, including microarchitecture, logic, circuits, postlayout tuning, and technology optimizations. In order to use effectively design resources available for power reduction, the team needed to understand precisely where the power was spent and the sensitivity to design parameters. A new power modeling methodology was deployed that allowed the team to evaluate the impact of design changes and various power reduction actions before sending them to the designers.
Ibm Journal of Research and Development | 2013
Victor Zyuban; Scott A. Taylor; Birger Christensen; Allen Hall; Christopher J. Gonzalez; Joshua Friedrich; Frances S. M. Clougherty; Jon Tetzloff; Rajeev R. Rao
The IBM POWER7+™ microprocessor is the next-generation IBM POWER® processor implemented in IBMs 32-nm silicon-on-insulator process. In addition to enhancing the chip functionality, implementing core-level and chiplet-level power gating and significantly increasing the size of the on-chip cache, the chip achieves a frequency boost of 15% to 25% compared with its predecessor at the same power. To achieve these challenging goals and deliver a serviceable power-frequency limited yield (PFLY), the IBM team made significant innovations in the post-silicon hardware-tuning methodology to counteract the inherent process variability and developed new PFLY models that account for several sources of variability in power and frequency. The paper describes the new methodology and the models, provides analysis of the sources of variability and their impact on power and frequency, and describes the work done to achieve correlation between the models and hardware measurements.
Ibm Journal of Research and Development | 2011
Joshua Friedrich; Ruchir Puri; Uwe Brandt; Markus Buehler; Jack DiLullo; Jeremy T. Hopkins; Mozammel Hossain; Michael A. Kazda; Joachim Keinert; Zahi M. Kurzum; Douglass T. Lamb; Alice Lee; Frank J. Musante; Jens Noack; Peter J. Osler; Stephen D. Posluszny; Haifeng Qian; Shyam Ramji; Vasant B. Rao; Lakshmi N. Reddy; Haoxing Ren; Thomas Edward Rosser; Benjamin R. Russell; Cliff C. N. Sze; Gustavo E. Tellez
The IBM POWER7® microprocessor, which is the next-generation IBM POWER® processor, leverages IBMs 45-nm silicon-on-insulator (SOI) process with embedded dynamic random access memory to achieve industry-leading performance. To deliver this complex 567-mm2 die, the IBM design team made significant innovations in chip design methodology. This paper describes the most critical methodology innovations specific to POWER7 design, which were in modularity, timing closure, and design efficiency.