Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Judith G. Levin is active.

Publication


Featured researches published by Judith G. Levin.


Progress in Nucleic Acid Research and Molecular Biology | 2005

Nucleic Acid Chaperone Activity of HIV‐1 Nucleocapsid Protein: Critical Role in Reverse Transcription and Molecular Mechanism

Judith G. Levin; Jianhui Guo; Ioulia Rouzina; Karin Musier-Forsyth

Publisher Summary This chapter focuses on recent biochemical and biophysical studies that examine the nucleic acid chaperone function of HIV‐1 nucleocapsid protein (NC) and its critical role in facilitating specific and efficient reverse transcription. This chapter also describes the effect of NC on individual steps in viral DNA synthesis. This chapter also summarizes what is known about NC structure, NC nucleic acid binding properties, and the contribution of the zinc fingers to chaperone activity. In addition, this chapter also discusses new evidence that provides a model to explain the mechanism of NCs nucleic acid chaperone activity at the molecular level. Characterization of the mechanism of NCs chaperone activity in molecular terms has been invaluable for understanding NCs effect on specific steps in reverse transcription. NC binds nucleic acids noncooperatively and does not rely on protein– protein interactions to drive aggregation and annealing. Instead, NC‐induced nucleic acid aggregation appears to be facilitated by simple polyelectrolyte attraction, similar to that observed for many multivalent cations.


Nucleic Acids Research | 2007

Deaminase-independent inhibition of HIV-1 reverse transcription by APOBEC3G

Yasumasa Iwatani; Denise S.B. Chan; Fu Wang; Kristen Stewart Maynard; Wataru Sugiura; Angela M. Gronenborn; Ioulia Rouzina; Mark C. Williams; Karin Musier-Forsyth; Judith G. Levin

APOBEC3G (A3G), a host protein that inhibits HIV-1 reverse transcription and replication in the absence of Vif, displays cytidine deaminase and single-stranded (ss) nucleic acid binding activities. HIV-1 nucleocapsid protein (NC) also binds nucleic acids and has a unique property, nucleic acid chaperone activity, which is crucial for efficient reverse transcription. Here we report the interplay between A3G, NC and reverse transcriptase (RT) and the effect of highly purified A3G on individual reactions that occur during reverse transcription. We find that A3G did not affect the kinetics of NC-mediated annealing reactions, nor did it inhibit RNase H cleavage. In sharp contrast, A3G significantly inhibited all RT-catalyzed DNA elongation reactions with or without NC. In the case of (−) strong-stop DNA synthesis, the inhibition was independent of A3Gs catalytic activity. Fluorescence anisotropy and single molecule DNA stretching analyses indicated that NC has a higher nucleic acid binding affinity than A3G, but more importantly, displays faster association/disassociation kinetics. RT binds to ssDNA with a much lower affinity than either NC or A3G. These data support a novel mechanism for deaminase-independent inhibition of reverse transcription that is determined by critical differences in the nucleic acid binding properties of A3G, NC and RT.


Journal of Virology | 2006

Biochemical Activities of Highly Purified, Catalytically Active Human APOBEC3G: Correlation with Antiviral Effect

Yasumasa Iwatani; Hiroaki Takeuchi; Klaus Strebel; Judith G. Levin

ABSTRACT APOBEC3G (APO3G), a cytidine deaminase with two zinc finger domains, inhibits human immunodeficiency virus type 1 replication in the absence of Vif. Here, we provide a comprehensive molecular analysis of the deaminase and nucleic acid binding activities of human APO3G using a pure system containing only one protein component, i.e., highly purified, catalytically active enzyme expressed in a baculovirus system. We demonstrate that APO3G deaminates cytosines in single-stranded DNA (ssDNA) only, whereas it binds efficiently to ssDNA and ssRNA, about half as well to a DNA/RNA hybrid, and poorly to double-stranded DNA and RNA. In addition, the base specificities for deamination and binding of ssDNA are not correlated. The minimum length required for detection of APO3G binding to an ssDNA oligonucleotide in an electrophoretic mobility shift assay is 16 nucleotides. Interestingly, if nucleocapsid protein and APO3G are present in the same reaction, we find that they do not interfere with each others binding to RNA and a complex containing the RNA and both proteins is formed. Finally, we also identify the functional activities of each zinc finger domain. Thus, although both zinc finger domains have the ability to bind nucleic acids, the first zinc finger contributes more to binding and APO3G encapsidation into virions than finger two. In contrast, deamination is associated exclusively with the second zinc finger. Moreover, zinc finger two is more important than finger one for the antiviral effect, demonstrating a correlation between deaminase and antiviral activities.


Journal of Virology | 2001

Human Immunodeficiency Virus Type 1 N-Terminal Capsid Mutants That Exhibit Aberrant Core Morphology and Are Blocked in Initiation of Reverse Transcription in Infected Cells

Shixing Tang; Tsutomu Murakami; Beth E. Agresta; Stephen Campbell; Eric O. Freed; Judith G. Levin

ABSTRACT A group of conserved hydrophobic residues faces the interior of the coiled-coil-like structure within the N-terminal domain of the human immunodeficiency virus type 1 (HIV-1) capsid protein (CA). It has been suggested that these residues are important for maintaining stable structure and functional activity. To investigate this possibility, we constructed two HIV-1 clones, in which Trp23 or Phe40 was changed to Ala. We also constructed a third mutant, D51A, which has a mutation that destroys a salt bridge between Pro1 and Asp51. All three mutants are replication defective but produce virus particles. Mutant virions contain all of the viral proteins, although the amount and stability of CA are decreased and levels of virion-associated integrase are reduced. The mutations do not affect endogenous reverse transcriptase activity; however, the mutants are blocked in their ability to initiate reverse transcription in infected cells and no minus-strand strong-stop DNA is detected. The defect in reverse transcription is associated with striking defects in the morphology of mutant virus cores, as determined by transmission electron microscopy. Our data indicate that the mutations made in this study disrupt CA structure and prevent proper maturation of virus cores. We propose that this results in a defect in core stability or in an early postentry event preceding reverse transcription.


RNA Biology | 2010

Role of HIV-1 nucleocapsid protein in HIV-1 reverse transcription

Judith G. Levin; Mithun Mitra; Anjali P. Mascarenhas; Karin Musier-Forsyth

The HIV -1 nucleocapsid protein (NC) is a nucleic acid chaperone, which remodels nucleic acid structures so that the most thermodynamically stable conformations are formed. This activity is essential for virus replication and has a critical role in mediating highly specific and efficient reverse transcription. NCs function in this process depends upon three properties: (1) ability to aggregate nucleic acids; (2) moderate duplex destabilization activity; and (3) rapid on-off binding kinetics. Here, we present a detailed molecular analysis of the individual events that occur during viral DNA synthesis and show how NCs properties are important for almost every step in the pathway. Finally, we also review biological aspects of reverse transcription during infection and the interplay between NC, reverse transcriptase and human APOBEC3G, an HIV-1 restriction factor that inhibits reverse transcription and virus replication in the absence of the HIV-1 Vif protein.


Advances in Virus Research | 1992

Translational suppression in retroviral gene expression.

Dolph L. Hatfield; Judith G. Levin; Alan Rein; Stephen Oroszlan

Publisher Summary This chapter summarizes the present state of knowledge concerning translational suppression in retroviruses. Other viruses, using similar mechanisms, are mentioned only briefly and tangentially. Retroviruses are a unique class of viruses that have been found in all classes of vertebrates but not in other organisms. Perhaps, their most distinctive properties are the flow of information from RNA to DNA early in the infectious process, and the subsequent integration of the viral DNA into the chromosomal DNA of the host cell. Retroviruses are the causative agents of acquired immunodeficiency syndrome (AIDS) and of a variety of neoplastic diseases in man and domestic animals. Elements with striking similarities to retroviruses, termed retrotransposons, occur in yeast and many other eukaryotes; elements sharing some characteristics with retroviruses have also recently been observed in prokaryotes. Because of the apparent relationship between retroviruses and retrotransposons, this chapter discusses of retrotransposons as well as retroviruses. Though all retroviruses utilize translational suppression in pol-protein synthesis, different groups of retroviruses use two completely distinct types of translational suppression. One of these is in-frame or readthrough suppression and the other is ribosomal frameshifting.


Journal of Virology | 2002

Subtle Alterations of the Native Zinc Finger Structures Have Dramatic Effects on the Nucleic Acid Chaperone Activity of Human Immunodeficiency Virus Type 1 Nucleocapsid Protein

Jianhui Guo; Tiyun Wu; Bradley F. Kane; Donald G. Johnson; Louis E. Henderson; Robert J. Gorelick; Judith G. Levin

ABSTRACT The nucleocapsid protein (NC) of human immunodeficiency virus type 1 has two zinc fingers, each containing the invariant CCHC zinc-binding motif; however, the surrounding amino acid context is not identical in the two fingers. Recently, we demonstrated that zinc coordination is required when NC unfolds complex secondary structures in RNA and DNA minus- and plus-strand transfer intermediates; this property of NC reflects its nucleic acid chaperone activity. Here we have analyzed the chaperone activities of mutants having substitutions of alternative zinc-coordinating residues, i.e., CCHH or CCCC, for the wild-type CCHC motif. We also investigated the activities of mutants that retain the CCHC motifs but have mutations that exchange or duplicate the zinc fingers (mutants 1-1, 2-1, and 2-2); these changes affect amino acid context. Our results indicate that in general, for optimal activity in an assay that measures stimulation of minus-strand transfer and inhibition of nonspecific self-priming, the CCHC motif in the zinc fingers cannot be replaced by CCHH or CCCC and the amino acid context of the fingers must be conserved. Context changes also reduce the ability of NC to facilitate primer removal in plus-strand transfer. In addition, we found that the first finger is a more crucial determinant of nucleic acid chaperone activity than the second finger. Interestingly, comparison of the in vitro results with earlier in vivo replication data raises the possibility that NC may adopt multiple conformations that are responsible for different NC functions during virus replication.


Nature Communications | 2013

NMR structure of human restriction factor APOBEC3A reveals substrate binding and enzyme specificity

In-Ja L. Byeon; Jinwoo Ahn; Mithun Mitra; Chang-Hyeock Byeon; Kamil Hercík; Jozef Hritz; Lisa M. Charlton; Judith G. Levin; Angela M. Gronenborn

Human APOBEC3A (A3A) is a single-stranded DNA (ssDNA) cytidine deaminase that restricts viral pathogens and endogenous retrotransposons and plays a role in the innate immune response. Furthermore, its potential to act as a genomic DNA mutator has implications for a role in carcinogenesis. A deeper understanding of A3A’s deaminase and nucleic acid binding properties, which is central to its biological activities, has been limited by the lack of structural information. Here, we report the NMR solution structure of A3A and show that the critical interface for interaction with ssDNA substrates includes residues extending beyond the catalytic center. Importantly, by monitoring deaminase activity in real time, we find that A3A displays similar catalytic activity on A3A-specific TTCA- or A3G-specific CCCA-containing substrates, involving key determinants immediately 5′ of the reactive C. Our results afford novel mechanistic insights into A3A-mediated deamination and provide the structural basis for further molecular studies.


Journal of Virology | 2006

Monomeric APOBEC3G Is Catalytically Active and Has Antiviral Activity

Sandrine Opi; Hiroaki Takeuchi; Sandra Kao; Mohammad A. Khan; Eri Miyagi; Ritu Goila-Gaur; Yasumasa Iwatani; Judith G. Levin; Klaus Strebel

ABSTRACT APOBEC3G (APO3G) is a cytidine deaminase that restricts replication of vif-defective human immunodeficiency virus type 1 (HIV-1). Like other members of the cellular deaminase family, APO3G has the propensity to form homo-multimers. In the current study, we investigated the functional determinants for multimerization of human APO3G and studied the role of APO3G multimerization for catalytic activity, virus encapsidation, and antiviral activity. We found that human APO3G is capable of forming multimeric complexes in transfected HeLa cells. Interestingly, multimerization of APO3G was exquisitely sensitive to RNase treatment, suggesting that interaction of APO3G subunits is facilitated or stabilized by an RNA bridge. Mutation of a conserved cysteine residue (C97) that is part of an N-terminal zinc-finger motif in APO3G abolished multimerization of APO3G; however, the C97 mutation inhibited neither in vitro deaminase activity nor antiviral function of APO3G. These results suggest that monomeric APO3G is both catalytically active and has antiviral activity. Interference studies employing either catalytically inactive or packaging-incompetent APO3G variants suggest that wild-type APO3G is packaged into HIV-1 particles in monomeric form. These results provide novel insights into the catalytic function and antiviral property of APO3G and demonstrate an important role for C97 in the RNA-dependent multimerization of this protein.


Virology | 1989

Chromatographic analysis of the aminoacyl-trnas which are required for translation of codons at and around the ribosomal frameshift sites of HIV, HTLV-1, and BLV

Dolph L. Hatfield; Ya-Xiong Feng; Byeong Jae Lee; Alan Rein; Judith G. Levin; Stephen Oroszlan

Abstract An examination of the frameshift signals or proposed signals within published sequences of retroviruses and other genetic elements from higher animals shows that each site utilizes a tRNA which normally contains Wybutoxine (Wye) base or Queuine (Q) base in the anticodon loop. We find experimentally that most of the Phe-tRNA present in HIV-1 infected cells lacks the highly modified Wye base in its anticodon loop and most of the Asn-tRNA in HTLV-1 and BLV infected cells lacks the highly modified Q base in its anticodon loop. Interestingly, Phe-tRNA translates a UUU codon within the ribosomal frameshift signal in HIV and Asn-tRNA translates a AAC codon within the proposed frameshift signals in HTLV-1 and BLV. Thus, the lack of a highly modified base in the anticodon loop of tRNAs in retroviral infected cells is correlated with the participation of these undermodified tRNAs in the corresponding frameshift event. This suggests that the “shifty” tRNAs proposed by Jacks et al. (Cell 55, 447–458, 1988) to carry out frameshifting may be hypomodified isoacceptors.

Collaboration


Dive into the Judith G. Levin's collaboration.

Top Co-Authors

Avatar

Tiyun Wu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jianhui Guo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Rein

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mithun Mitra

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge