Jyrki M. Mäkelä
Tampere University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jyrki M. Mäkelä.
Langmuir | 2012
Hannu Teisala; Mikko Tuominen; Mikko Aromaa; Milena Stepien; Jyrki M. Mäkelä; Jarkko J. Saarinen; Martti Toivakka; Jurkka Kuusipalo
Hierarchical roughness is known to effectively reduce the liquid-solid contact area and water droplet adhesion on superhydrophobic surfaces, which can be seen for example in the combination of submicrometer and micrometer scale structures on the lotus leaf. The submicrometer scale fine structures, which are often referred to as nanostructures in the literature, have an important role in the phenomenon of superhydrophobicity and low water droplet adhesion. Although the fine structures are generally termed as nanostructures, their actual dimensions are often at the submicrometer scale of hundreds of nanometers. Here we demonstrate that small nanometric structures can have very different effect on surface wetting compared to the large submicrometer scale structures. Hierarchically rough superhydrophobic TiO(2) nanoparticle surfaces generated by the liquid flame spray (LFS) on board and paper substrates revealed that the nanoscale surface structures have the opposite effect on the droplet adhesion compared to the larger submicrometer and micrometer scale structures. Variation in the hierarchical structure of the nanoparticle surfaces contributed to varying droplet adhesion between the high- and low-adhesive superhydrophobic states. Nanoscale structures did not contribute to superhydrophobicity, and there was no evidence of the formation of the liquid-solid-air composite interface around the nanostructures. Therefore, larger submicrometer and micrometer scale structures were needed to decrease the liquid-solid contact area and to cause the superhydrophobicity. Our study suggests that a drastic wetting transition occurs on superhydrophobic surfaces at the nanometre scale; i.e., the transition between the Cassie-Baxter and Wenzel wetting states will occur as the liquid-solid-air composite interface collapses around nanoscale structures. Consequently, water adheres tightly to the surface by penetrating into the nanostructure. The droplet adhesion mechanism presented in this paper gives valuable insight into a phenomenon of simultaneous superhydrophobicity and high water droplet adhesion and contributes to a more detailed comprehension of superhydrophobicity overall.
Nanotechnology | 2007
Lauri Sainiemi; Helmi Keskinen; Mikko Aromaa; Laura Luosujärvi; Kestas Grigoras; Tapio Kotiaho; Jyrki M. Mäkelä; Sami Franssila
In this study, a method for fabrication of high aspect ratio silicon nanopillars is presented. The method combines liquid flame spray production of silica nanoparticle agglomerates with cryogenic deep reactive ion etching. First, the nanoparticle agglomerates, having a diameter of about 100 nm, are deposited on a silicon wafer. Then, during the subsequent cryogenic deep reactive ion etching process, the particle agglomerates act as etch masks and silicon nanopillars are formed. Aspect ratios of up to 20:1 are demonstrated. The masking process is rapid, cheap and has the potential to be scaled up for large areas. Three other structured silicon surfaces were fabricated for comparison. All four surfaces were utilized as desorption/ionization on silicon (DIOS) sample plates. The mass spectrometry results indicate that nanopillar surfaces masked with the liquid flame spray technique are well suited as DIOS sample plates.
ACS Applied Materials & Interfaces | 2014
Joel Songok; Mikko Tuominen; Hannu Teisala; Janne Haapanen; Jyrki M. Mäkelä; Jurkka Kuusipalo; Martti Toivakka
Paper-based devices provide an alternative technology for simple, low-cost, portable, and disposable diagnostic tools for many applications, including clinical diagnosis, food quality control, and environmental monitoring. In this study we report a two-step fabrication process for creating two-dimensional microfluidic channels to move liquids on a hydrophobized paper surface. A highly hydrophobic surface was created on paper by TiO2 nanoparticle coating using a high-speed, roll-to-roll liquid flame spray technique. The hydrophilic pattern was then generated by UV irradiation through a photomask utilizing the photocatalytic property of TiO2. The flow dynamics of five model liquids with differing surface tensions 48-72 mN·m(-1) and viscosities 1-15 mN·m(-2) was studied. The results show that the liquid front (l) in a channel advances in time (t) according to the power law l=Zt0.5 (Z is an empirical constant which depend on the liquid properties and channel dimensions). The flow dynamics of the liquids with low viscosity show a dependence on the channel width and the droplet volume, while the flow of liquids with high viscosity is mainly controlled by the viscous forces.
Talanta | 2011
Marko Mäkinen; Mika Sillanpää; A.-K. Viitanen; Andrzej Knap; Jyrki M. Mäkelä; Jarosław Puton
Vaporized water molecules are unavoidably present in every ion mobility spectrometry (IMS) measurement. In general, this humidity is seen in positive mode IMS-spectra as protonated water clusters producing reactant ions. Clusters containing water molecules are also abundant among ions generated by an analyte. In this paper the influence of humidity on IMS-spectra was systematically investigated and determined by measuring different concentrations of a selected amine at various levels of humidity. The selected amine, trimethylamine (TMA), was chosen as the model analyte due to its atmospheric importance. During the measurements, surplus water vapor was introduced into the drift section inside the IMS instrument; the concentrations of both amine and water were adjusted by controlling the gas flows. The simultaneous presence of water vapor and analyte at various predefined concentrations revealed the sensitivity of the IMS-technique to water and the effect of moisture on the ion mobility distribution. The results indicated that the existence, positions and shapes of the peaks are strongly dependent on the amount of moisture. However, the sensitivity of detection is weakly dependent on humidity if this detection is based on monomer ion peak or the sum of peaks generated by the analyte, In addition, the main principles of the adjustment of sample and water concentrations are presented here.
Aerosol Science and Technology | 2011
Jyrki M. Mäkelä; Mikko Aromaa; Hannu Teisala; Mikko Tuominen; Milena Stepien; Jarkko J. Saarinen; Martti Toivakka; Jurkka Kuusipalo
Nanostructured coatings have been prepared on a flexible, moving paperboard using deposition of ca. 40-nm-sized titanium dioxide nanoparticles generated by a liquid flame spray process, directly above the paperboard, to achieve improved functional properties for the material. Properties such as surface wettability can be extensively improved by a thin layer of nanoparticles on the substrate. Owing to the vulnerability to heat, the substrate needs to be moved rapidly through the flame. This, on the other hand, generates a setting for a roll-to-roll coating process, which favors upscaling of the method. In this article, we characterize the flame process for nanoparticle coating and quantify the operational window for this method. The amount of deposited material as a function of substrate speed through the flame is discussed. Although the thermophoretic flux of nanoparticles is estimated to be very high from the hot flame onto the cold substrate, other factors were observed to limit the deposited amount of particles. Total mass yields of 5%–20% of the injected precursor material into the titanium dioxide nanocoating on the paperboard were achieved. With these yields, a highly hydrophobic surface was obtained by a mass loading of 10–50 mg/m2 of titanium dioxide on the paperboard.
Journal of Materials Research | 2004
H. Keskinen; Jyrki M. Mäkelä; Minnamari Vippola; M. Nurminen; J. Liimatainen; Toivo Lepistö; J. Keskinen
Ag-Pd alloy nanoparticles have been generated from silver and palladium nitrate precursors using a high temperature aerosol method, the liquid flame spray (LFS) process. In the LFS process, a spray aerosol of precursor liquid is introduced into a high-temperature H 2 -O 2 flame. The primary micron-sized spray droplets evaporate in the flame, and the final particulate product is a result of the nucleation of the pure metal vapors shortly after the flame. In the study, three Ag-Pd molar ratios-10:90, 50:50, and 90:10-were used in the precursor. As a result of the synthesis, metal alloy nanoparticles with practically the same concentration ratios, correspondingly, were produced with the method. In the experiments, metal mass flow rates of 0.01-0.8 g/min were covered. The size of the particles was determined to be in the range of 10-50 nm by aerosol instrumentation. The particles were spherical and slightly agglomerated. It was concluded that the particle size can be controlled via the total precursor mass flow rate, and the composition can be controlled by the molar ratio of Ag and Pd compounds in the precursor liquid.
Langmuir | 2013
Milena Stepien; Jarkko J. Saarinen; Hannu Teisala; Mikko Tuominen; Mikko Aromaa; Janne Haapanen; Jurkka Kuusipalo; Jyrki M. Mäkelä; Martti Toivakka
The chemical composition of a TiO2 nanoparticle coated paper surface was analyzed using time-of-flight secondary ion mass spectrometry (ToF-SIMS) to study the interconnection between wettability and surface chemistry on the nanoscale. In this work, a superhydrophobic TiO2 surface rich in carboxyl-terminated molecules was created by a liquid flame spray process. The TiO2 nanoparticle coated paper surface can be converted by photocatalytic oxidation into a highly hydrophilic one. Interestingly, the hydrophilic surface can be converted back into a superhydrophobic surface by heat treatment. The results showed that both ultraviolet A (UVA) and oven treatment induce changes in the surface chemistry within a few nanometers of the paper surface. These findings are consistent with those from our previously reported X-ray photoelectron spectroscopy (XPS) analysis, but the ToF-SIMS analysis yields more accurate insight into the surface chemistry.
Talanta | 2008
A.-K. Viitanen; Timo Mauriala; T. Mattila; Alexey Adamov; Christian Schack Pedersen; Jyrki M. Mäkelä; M. Marjamäki; Alexey A. Sysoev; J. Keskinen; Tapio Kotiaho
Performance of several time-of-flight (TOF) type ion mobility spectrometers (IMS) was compared in a joint measurement campaign and their mobility scales were adjusted based on the measurements. A standard reference compound 2,6-di-tert butylpyridine (2,6-DtBP) was used to create a single peak ion mobility distribution with a known mobility value. The effective length of the drift tube of each device, considered here as an instrument constant, was determined based on the measurements. Sequentially, two multi-peaked test compounds, DMMP and DIMP, were used to verify the performance of the adjustment procedure in a wider mobility scale. By determining the effective drift tube lengths using 2,6-DtBP, agreement between the devices was achieved. The determination of effective drift tube lengths according to standard reference compound was found to be a good method for instrument inter-comparison. The comparison procedure, its benefits and shortcomings as well as dependency on accuracy of literature value are discussed along with the results.
Cellulose | 2013
Hannu Teisala; Mikko Tuominen; Milena Stepien; Janne Haapanen; Jyrki M. Mäkelä; Jarkko J. Saarinen; Martti Toivakka; Jurkka Kuusipalo
Titanium dioxide (TiO2) is a photoactive material with various interesting and useful properties. One of those is the perfect wettability of TiO2 surface after ultraviolet (UV) illumination. Wettability of a solid surface plays an important role in the field of printing, coating, and adhesion among others. Here we report on a superhydrophobic and photoactive liquid flame spray (LFS) generated TiO2 nanoparticle coating that can be applied on web-like materials such as paper and board in one-step roll-to-roll process. The LFS TiO2 nanoparticle coated paper and board were superhydrophobic instantly after the coating procedure because of spontaneously accumulated carbonaceous overlayer on TiO2, and thus there was no need for any type of separate hydrophobization treatment. The highly photoactive LFS TiO2 nanoparticle coating could be converted steplessly from superhydrophobic to superhydrophilic by UV-illumination, and the coating gave strong response to natural daylight illumination even in the shade. The superhydrophobic LFS TiO2 coated surface can be used as an intelligent substrate, where photo-generated hydrophilic patterns guide the fluid setting and figure formation. Our study reveals that the wettability changes on the LFS TiO2 surface were primarily caused by the photocatalytic removal of the carbonaceous material from TiO2 during the UV-illumination and spontaneous accumulation of the carbonaceous material on the surface of the metal oxide during storage in the dark. The latter mechanism was found to be a temperature activated process which could be significantly speeded up by heat treatment. If other mechanisms such as surface oxidization, increment of hydroxyl groups, or charge separation played a role in the wetting phenomena on TiO2, their effect was rather secondary as the removal and accumulation of the carbonaceous material dominated the wettability changes on the surface. Our study gives valuable information on the complex issue of photo-induced wettability changes on TiO2.
Aerosol Science and Technology | 2012
Jaakko Yli-Ojanperä; Hiromu Sakurai; Kenjiro Iida; Jyrki M. Mäkelä; Kensei Ehara; Jorma Keskinen
We carried out a set of experiments to compare three particle number concentration standards (NCSs) by calibrating the same condensation particle counter (CPC) unit (Model 3772, TSI Inc., Shoreview, MN, USA). The standards were, in the order of operation size range, the primary NCS of the National Institute of Advanced Industrial Science and Technology (AIST, Japan), the Single Charged Aerosol Reference (SCAR) (Finland), and the Inkjet Aerosol Generator (IAG) of AIST. The results obtained with the 3 standards were found to agree at all overlapping particle sizes within the uncertainty limits. The relative expanded uncertainties varied between 0.6% and 2.6%, depending on the size and standard, while the overall agreement between the standards was within 0.5%. The observed consistency of the results is an important step toward establishing internationally coherent particle NCSs. As a result, the CPC 3772 was successfully calibrated in a particularly wide size range, approximately from 10 nm to 10 μm. The results indicate that the CPC can be considered as a practical tool for calibrating particle number concentration up to 1 μm. In general, the particle number concentration can be measured up to 2.5 μm without a significant decrease of the detection efficiency. By attaching an appropriate size-classifying inlet, the CPC could be used even for measuring the total number concentration for particles smaller than 2.5 μm, in parallel with the PM2.5 mass measurement. Above this particle diameter, the detection efficiency gradually decreased and reached 50% at about 10 μm. Copyright 2012 American Association for Aerosol Research