Milena Stepien
Åbo Akademi University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Milena Stepien.
Langmuir | 2012
Hannu Teisala; Mikko Tuominen; Mikko Aromaa; Milena Stepien; Jyrki M. Mäkelä; Jarkko J. Saarinen; Martti Toivakka; Jurkka Kuusipalo
Hierarchical roughness is known to effectively reduce the liquid-solid contact area and water droplet adhesion on superhydrophobic surfaces, which can be seen for example in the combination of submicrometer and micrometer scale structures on the lotus leaf. The submicrometer scale fine structures, which are often referred to as nanostructures in the literature, have an important role in the phenomenon of superhydrophobicity and low water droplet adhesion. Although the fine structures are generally termed as nanostructures, their actual dimensions are often at the submicrometer scale of hundreds of nanometers. Here we demonstrate that small nanometric structures can have very different effect on surface wetting compared to the large submicrometer scale structures. Hierarchically rough superhydrophobic TiO(2) nanoparticle surfaces generated by the liquid flame spray (LFS) on board and paper substrates revealed that the nanoscale surface structures have the opposite effect on the droplet adhesion compared to the larger submicrometer and micrometer scale structures. Variation in the hierarchical structure of the nanoparticle surfaces contributed to varying droplet adhesion between the high- and low-adhesive superhydrophobic states. Nanoscale structures did not contribute to superhydrophobicity, and there was no evidence of the formation of the liquid-solid-air composite interface around the nanostructures. Therefore, larger submicrometer and micrometer scale structures were needed to decrease the liquid-solid contact area and to cause the superhydrophobicity. Our study suggests that a drastic wetting transition occurs on superhydrophobic surfaces at the nanometre scale; i.e., the transition between the Cassie-Baxter and Wenzel wetting states will occur as the liquid-solid-air composite interface collapses around nanoscale structures. Consequently, water adheres tightly to the surface by penetrating into the nanostructure. The droplet adhesion mechanism presented in this paper gives valuable insight into a phenomenon of simultaneous superhydrophobicity and high water droplet adhesion and contributes to a more detailed comprehension of superhydrophobicity overall.
Aerosol Science and Technology | 2011
Jyrki M. Mäkelä; Mikko Aromaa; Hannu Teisala; Mikko Tuominen; Milena Stepien; Jarkko J. Saarinen; Martti Toivakka; Jurkka Kuusipalo
Nanostructured coatings have been prepared on a flexible, moving paperboard using deposition of ca. 40-nm-sized titanium dioxide nanoparticles generated by a liquid flame spray process, directly above the paperboard, to achieve improved functional properties for the material. Properties such as surface wettability can be extensively improved by a thin layer of nanoparticles on the substrate. Owing to the vulnerability to heat, the substrate needs to be moved rapidly through the flame. This, on the other hand, generates a setting for a roll-to-roll coating process, which favors upscaling of the method. In this article, we characterize the flame process for nanoparticle coating and quantify the operational window for this method. The amount of deposited material as a function of substrate speed through the flame is discussed. Although the thermophoretic flux of nanoparticles is estimated to be very high from the hot flame onto the cold substrate, other factors were observed to limit the deposited amount of particles. Total mass yields of 5%–20% of the injected precursor material into the titanium dioxide nanocoating on the paperboard were achieved. With these yields, a highly hydrophobic surface was obtained by a mass loading of 10–50 mg/m2 of titanium dioxide on the paperboard.
Langmuir | 2013
Milena Stepien; Jarkko J. Saarinen; Hannu Teisala; Mikko Tuominen; Mikko Aromaa; Janne Haapanen; Jurkka Kuusipalo; Jyrki M. Mäkelä; Martti Toivakka
The chemical composition of a TiO2 nanoparticle coated paper surface was analyzed using time-of-flight secondary ion mass spectrometry (ToF-SIMS) to study the interconnection between wettability and surface chemistry on the nanoscale. In this work, a superhydrophobic TiO2 surface rich in carboxyl-terminated molecules was created by a liquid flame spray process. The TiO2 nanoparticle coated paper surface can be converted by photocatalytic oxidation into a highly hydrophilic one. Interestingly, the hydrophilic surface can be converted back into a superhydrophobic surface by heat treatment. The results showed that both ultraviolet A (UVA) and oven treatment induce changes in the surface chemistry within a few nanometers of the paper surface. These findings are consistent with those from our previously reported X-ray photoelectron spectroscopy (XPS) analysis, but the ToF-SIMS analysis yields more accurate insight into the surface chemistry.
Cellulose | 2013
Hannu Teisala; Mikko Tuominen; Milena Stepien; Janne Haapanen; Jyrki M. Mäkelä; Jarkko J. Saarinen; Martti Toivakka; Jurkka Kuusipalo
Titanium dioxide (TiO2) is a photoactive material with various interesting and useful properties. One of those is the perfect wettability of TiO2 surface after ultraviolet (UV) illumination. Wettability of a solid surface plays an important role in the field of printing, coating, and adhesion among others. Here we report on a superhydrophobic and photoactive liquid flame spray (LFS) generated TiO2 nanoparticle coating that can be applied on web-like materials such as paper and board in one-step roll-to-roll process. The LFS TiO2 nanoparticle coated paper and board were superhydrophobic instantly after the coating procedure because of spontaneously accumulated carbonaceous overlayer on TiO2, and thus there was no need for any type of separate hydrophobization treatment. The highly photoactive LFS TiO2 nanoparticle coating could be converted steplessly from superhydrophobic to superhydrophilic by UV-illumination, and the coating gave strong response to natural daylight illumination even in the shade. The superhydrophobic LFS TiO2 coated surface can be used as an intelligent substrate, where photo-generated hydrophilic patterns guide the fluid setting and figure formation. Our study reveals that the wettability changes on the LFS TiO2 surface were primarily caused by the photocatalytic removal of the carbonaceous material from TiO2 during the UV-illumination and spontaneous accumulation of the carbonaceous material on the surface of the metal oxide during storage in the dark. The latter mechanism was found to be a temperature activated process which could be significantly speeded up by heat treatment. If other mechanisms such as surface oxidization, increment of hydroxyl groups, or charge separation played a role in the wetting phenomena on TiO2, their effect was rather secondary as the removal and accumulation of the carbonaceous material dominated the wettability changes on the surface. Our study gives valuable information on the complex issue of photo-induced wettability changes on TiO2.
Journal of Adhesion Science and Technology | 2014
Mikko Tuominen; Hannu Teisala; Mikko Aromaa; Milena Stepien; Jyrki M. Mäkelä; Jarkko J. Saarinen; Martti Toivakka; Jurkka Kuusipalo
Corona, flame, atmospheric plasma, and liquid flame spray (LFS) techniques were used to create highly hydrophilic surfaces for pigment-coated paper and board and machine-glossed paper. All the surface modification techniques were performed continuously in ambient atmosphere. The physical changes on the surfaces were characterized by field emission gun-scanning electron microscopy (FEG-SEM), atomic force microscopy and Parker Print-Surf surface roughness. The chemical changes were analysed by X-ray photoelectron spectroscopy. The superhydrophilic surfaces, i.e. contact angle of water (CAW) <10°, were created mainly by modifying the surface chemistry of the paper and board by argon plasma or SiO2 coating. The nano- and microscale roughness existing on paper and board surfaces enabled the creation of the superhydrophilic surfaces. Furthermore, the benefits and limitations of the surface modification techniques are discussed and compared. For example, the SiO2 coating maintained its extreme hydrophilicity for at least six months, whereas the CAW of argon plasma-treated surface increased to about 20° already in one day.
Nanoscale Research Letters | 2013
Milena Stepien; Jarkko J. Saarinen; Hannu Teisala; Mikko Tuominen; Janne Haapanen; Jyrki M. Mäkelä; Jurkka Kuusipalo; Martti Toivakka
Compressibility of liquid flame spray-deposited porous TiO2 nanoparticle coating was studied on paperboard samples using a traditional calendering technique in which the paperboard is compressed between a metal and polymer roll. Surface superhydrophobicity is lost due to a smoothening effect when the number of successive calendering cycles is increased. Field emission scanning electron microscope surface and cross‒sectional images support the atomic force microscope roughness analysis that shows a significant compressibility of the deposited TiO2 nanoparticle coating with decrease in the surface roughness and nanoscale porosity under external pressure.PACS61.46.-w; 68.08.Bc; 81.07.-b
Cellulose | 2014
Hannu Teisala; Mikko Tuominen; Janne Haapanen; Mikko Aromaa; Milena Stepien; Jyrki M. Mäkelä; Jarkko J. Saarinen; Martti Toivakka; Jurkka Kuusipalo
Surface wetting/anti-wetting and liquid absorption are relevant properties of many porous solids including paper and other cellulose-based materials. Here we demonstrate how surface wetting by water and water absorption of commercially available kraft paper can be altered by thin nanoparticle coatings fabricated by liquid flame spray in facile and continuous one-step process. Surface wettability and absorption properties of paper increased with silica and decreased with titania (TiO2) nanoparticle coatings. Moreover, the water-repellent (superhydrophobic) TiO2 nanoparticle coated paper could be switched to superhydrophilic and water absorbing by ultraviolet illumination. The experiments revealed that although surface wetting and liquid absorption of nanoparticle coated paper are strongly related to each other, they are two distinct phenomena which do not necessarily correlate. We propose wetting regimes on the nanoparticle coated paper samples on the basis of the experimental observations.
Surface & Coatings Technology | 2010
Hannu Teisala; Mikko Tuominen; Mikko Aromaa; Jyrki M. Mäkelä; Milena Stepien; Jarkko J. Saarinen; Martti Toivakka; Jurkka Kuusipalo
Applied Surface Science | 2011
Milena Stepien; Jarkko J. Saarinen; Hannu Teisala; Mikko Tuominen; Mikko Aromaa; Jurkka Kuusipalo; Jyrki M. Mäkelä; Martti Toivakka
Journal of Aerosol Science | 2012
Mikko Aromaa; Anssi Arffman; Heikki Suhonen; Janne Haapanen; Jorma Keskinen; Mari Honkanen; Juha-Pekka Nikkanen; Erkki Levänen; Maria Messing; Knut Deppert; Hannu Teisala; Mikko Tuominen; Jurkka Kuusipalo; Milena Stepien; Jarkko J. Saarinen; Martti Toivakka; Jyrki M. Mäkelä