Kamen Todorov
ETH Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kamen Todorov.
The Astrophysical Journal | 2015
Drake Deming; Heather A. Knutson; Joshua A. Kammer; Benjamin J. Fulton; James G. Ingalls; Sean J. Carey; Adam Burrows; Jonathan J. Fortney; Kamen Todorov; Eric Agol; Nicolas B. Cowan; Jean-Michel Desert; Jonathan Fraine; Jonathan Langton; Caroline V. Morley
HAT-P-20b is a giant metal-rich exoplanet orbiting a metal-rich star. We analyze two secondary eclipses of the planet in each of the 3.6 and 4.5 μm bands of Warm Spitzer. We have developed a simple, powerful, and radically different method to correct the intra-pixel effect for Warm Spitzer data, which we call pixel-level decorrelation (PLD). PLD corrects the intra-pixel effect very effectively, but without explicitly using—or even measuring—the fluctuations in the apparent position of the stellar image. We illustrate and validate PLD using synthetic and real data and comparing the results to previous analyses. PLD can significantly reduce or eliminate red noise in Spitzer secondary eclipse photometry, even for eclipses that have proven to be intractable using other methods. Our successful PLD analysis of four HAT-P-20b eclipses shows a best-fit blackbody temperature of 1134 ± 29 K, indicating inefficient longitudinal transfer of heat, but lacking evidence for strong molecular absorption. We find sufficient evidence for variability in the 4.5 μm band that the eclipses should be monitored at that wavelength by Spitzer, and this planet should be a high priority for James Webb Space Telescope spectroscopy. All four eclipses occur about 35 minutes after orbital phase 0.5, indicating a slightly eccentric orbit. A joint fit of the eclipse and transit times with extant RV data yields e cos ω = 0.01352^(+0.00054)_(-0.00057) and establishes the small eccentricity of the orbit to high statistical confidence. HAT-P-20b is another excellent candidate for orbital evolution via Kozai migration or other three-body mechanisms.
The Astrophysical Journal | 2012
Kamen Todorov; Drake Deming; Heather A. Knutson; Adam Burrows; Pedro V. Sada; Nicolas B. Cowan; Eric Agol; J.-M. Desert; Jonathan J. Fortney; David Charbonneau; Gregory Laughlin; Jonathan Langton; Nikole K. Lewis
We have analyzed Warm Spitzer/IRAC observations of the secondary eclipses of three planets, XO-4b, HAT-P-6b and HAT-P-8b. We measure secondary eclipse amplitudes at 3.6{\mu}m and 4.5{\mu}m for each target. XO-4b exhibits a stronger eclipse depth at 4.5{\mu}m than at 3.6{\mu}m, which is consistent with the presence of a temperature inversion. HAT-P-8b shows a stronger eclipse amplitude at 3.6{\mu}m, and is best-described by models without a temperature inversion. The eclipse depths of HAT-P-6b can be fitted with models with a small or no temperature inversion. We consider our results in the context of a postulated relationship between stellar activity and temperature inversions and a relationship between irradiation level and planet dayside temperature, as discussed by Knutson et al. (2010) and Cowan&Agol (2011), respectively. Our results are consistent with these hypotheses, but do not significantly strengthen them. To measure accurate secondary eclipse central phases, we require accurate ephemerides. We obtain primary transit observations and supplement them with publicly available observations to update the orbital ephemerides of the three planets. Based on the secondary eclipse timing, we set upper boundaries for e cos(\omega) for HAT-P-6b, HAT-P-8b and XO-4b and find that the values are consistent with circular orbits.We analyze Warm Spitzer/Infrared Array Camera observations of the secondary eclipses of three planets, XO-4b, HAT-P-6b, and HAT-P-8b. We measure secondary eclipse amplitudes at 3.6 μm and 4.5 μm for each target. XO-4b exhibits a stronger eclipse depth at 4.5 μm than at 3.6 μm, which is consistent with the presence of a temperature inversion. HAT-P-8b shows a stronger eclipse amplitude at 3.6 μm and is best described by models without a temperature inversion. The eclipse depths of HAT-P-6b can be fitted with models with a small or no temperature inversion. We consider our results in the context of a postulated relationship between stellar activity and temperature inversion and a relationship between irradiation level and planet dayside temperature, as discussed by Knutson et al. and Cowan & Agol, respectively. Our results are consistent with these hypotheses, but do not significantly strengthen them. To measure accurate secondary eclipse central phases, we require accurate ephemerides. We obtain primary transit observations and supplement them with publicly available observations to update the orbital ephemerides of the three planets. Based on the secondary eclipse timing, we set upper boundaries for e cos(ω) for HAT-P-6b, HAT-P-8b, and XO-4b and find that the values are consistent with circular orbits.
The Astrophysical Journal | 2010
Kamen Todorov; Drake Deming; Jospeph Harrington; Kevin B. Stevenson; William C. Bowman; Sarah Nymeyer; Jonathan J. Fortney; G. Á. Bakos
We report Spitzer/IRAC photometry of the transiting giant exoplanet HAT-P-1b during its secondary eclipse. This planet lies near the postulated boundary between the pM and pL-class of hot Jupiters, and is important as a test of models for temperature inversions in hot Jupiter atmospheres. We derive eclipse depths for HAT-P-1b, in units of the stellar flux, that are: 0.080% ± 0.008% [3.6 μm], 0.135% ± 0.022% [4.5 μm], 0.203% ± 0.031% [5.8 μm], and 0.238% ± 0.040% [8.0 μm]. These values are best fit using an atmosphere with a modest temperature inversion, intermediate between the archetype inverted atmosphere (HD 209458b) and a model without an inversion. The observations also suggest that this planet is radiating a large fraction of the available stellar irradiance on its dayside, with little available for redistribution by circulation. This planet has sometimes been speculated to be inflated by tidal dissipation, based on its large radius in discovery observations, and on a non-zero orbital eccentricity allowed by the radial velocity data. The timing of the secondary eclipse is very sensitive to orbital eccentricity, and we find that the central phase of the eclipse is 0.4999 ± 0.0005. The difference between the expected and observed phase indicates that the orbit is close to circular, with a 3σ limit of |e cos ω| < 0.002.
The Astrophysical Journal | 2015
Ian Wong; Heather A. Knutson; Nikole K. Lewis; Tiffany Kataria; Adam Burrows; Jonathan J. Fortney; J. Schwartz; Eric Agol; Nicolas B. Cowan; Drake Deming; Jean-Michel Desert; Benjamin J. Fulton; Andrew W. Howard; Jonathan Langton; Gregory Laughlin; Kamen Todorov
We present full-orbit phase curve observations of the eccentric (e ~ 0.08) transiting hot Jupiter WASP-14b obtained in the 3.6 and 4.5 μm bands using the Spitzer Space Telescope. We use two different methods for removing the intrapixel sensitivity effect and compare their efficacy in decoupling the instrumental noise. Our measured secondary eclipse depths of 0.1882% ± 0.0048% and 0.2247% ± 0.0086% at 3.6 and 4.5 μm, respectively, are both consistent with a blackbody temperature of 2402 ± 35 K. We place a 2σ upper limit on the nightside flux at 3.6 μm and find it to be 9% ± 1% of the dayside flux, corresponding to a brightness temperature of 1079 K. At 4.5 μm, the minimum planet flux is 30% ± 5% of the maximum flux, corresponding to a brightness temperature of 1380 ± 65 K. We compare our measured phase curves to the predictions of one-dimensional radiative transfer and three-dimensional general circulation models. We find that WASP-14bs measured dayside emission is consistent with a model atmosphere with equilibrium chemistry and a moderate temperature inversion. These same models tend to overpredict the nightside emission at 3.6 μm, while underpredicting the nightside emission at 4.5 μm. We propose that this discrepancy might be explained by an enhanced global C/O ratio. In addition, we find that the phase curves of WASP-14b (7.8 M_(Jup)) are consistent with a much lower albedo than those of other Jovian mass planets with thermal phase curve measurements, suggesting that it may be emitting detectable heat from the deep atmosphere or interior processes.
The Astrophysical Journal | 2016
Ian Wong; Heather A. Knutson; Tiffany Kataria; Nikole K. Lewis; Adam Burrows; Jonathan J. Fortney; J. Schwartz; Avi Shporer; Eric Agol; Nicholas Cowan; Drake Deming; Jean-Michel Desert; Benjamin J. Fulton; Andrew W. Howard; Jonathan Langton; Gregory Laughlin; Kamen Todorov
We analyze full-orbit phase curve observations of the transiting hot Jupiters WASP-19b and HAT-P-7b at 3.6 and 4.5 μm, obtained using the Spitzer Space Telescope. For WASP-19b, we measure secondary eclipse depths of 0.485% ± 0.024% and 0.584% ± 0.029% at 3.6 and 4.5 μm, which are consistent with a single blackbody with effective temperature 2372 ± 60 K. The measured 3.6 and 4.5 μm secondary eclipse depths for HAT-P-7b are 0.156% ± 0.009% and 0.190% ± 0.006%, which are well described by a single blackbody with effective temperature 2667 ± 57 K. Comparing the phase curves to the predictions of one-dimensional and three-dimensional atmospheric models, we find that WASP-19bs dayside emission is consistent with a model atmosphere with no dayside thermal inversion and moderately efficient day–night circulation. We also detect an eastward-shifted hotspot, which suggests the presence of a superrotating equatorial jet. In contrast, HAT-P-7bs dayside emission suggests a dayside thermal inversion and relatively inefficient day–night circulation; no hotspot shift is detected. For both planets, these same models do not agree with the measured nightside emission. The discrepancies in the model-data comparisons for WASP-19b might be explained by high-altitude silicate clouds on the nightside and/or high atmospheric metallicity, while the very low 3.6 μm nightside planetary brightness for HAT-P-7b may be indicative of an enhanced global C/O ratio. We compute Bond albedos of 0.38 ± 0.06 and 0 ( <0.08 at lσ) for WASP-19b and HAT-P-7b, respectively. In the context of other planets with thermal phase curve measurements, we show that WASP-19b and HAT-P-7b fit the general trend of decreasing day–night heat recirculation with increasing irradiation.
The Astrophysical Journal | 2014
Joseph G. O'Rourke; Heather A. Knutson; Ming Zhao; Jonathan J. Fortney; Adam Burrows; Eric Agol; Drake Deming; J.-M. Desert; Andrew W. Howard; Nikole K. Lewis; Kamen Todorov
We report secondary eclipse photometry of two hot Jupiters, WASP-48b and HAT-P-23b, at 3.6 and 4.5 μm taken with the InfraRed Array Camera aboard the Spitzer Space Telescope during the warm Spitzer mission and in the H and K_S bands with the Wide Field IR Camera at the Palomar 200 inch Hale Telescope. WASP-48b and HAT-P-23b are Jupiter-mass and twice Jupiter-mass objects orbiting an old, slightly evolved F star and an early G dwarf star, respectively. In the H, K_S , 3.6 μm, and 4.5 μm bands, respectively, we measure secondary eclipse depths of 0.047% ± 0.016%, 0.109% ± 0.027%, 0.176% ± 0.013%, and 0.214% ± 0.020% for WASP-48b. In the K_S , 3.6 μm, and 4.5 μm bands, respectively, we measure secondary eclipse depths of 0.234% ± 0.046%, 0.248% ± 0.019%, and 0.309% ± 0.026% for HAT-P-23b. For WASP-48b and HAT-P-23b, respectively, we measure delays of 2.6 ± 3.9 minutes and 4.0 ± 2.4 minutes relative to the predicted times of secondary eclipse for circular orbits, placing 2σ upper limits on |ecos ω| of 0.0053 and 0.0080, both of which are consistent with circular orbits. The dayside emission spectra of these planets are well-described by blackbodies with effective temperatures of 2158 ± 100 K (WASP-48b) and 2154 ± 90 K (HAT-P-23b), corresponding to moderate recirculation in the zero albedo case. Our measured eclipse depths are also consistent with one-dimensional radiative transfer models featuring varying degrees of recirculation and weak thermal inversions or no inversions at all. We discuss how the absence of strong temperature inversions on these planets may be related to the activity levels and metallicities of their host stars.
The Astrophysical Journal | 2014
Kamen Todorov; Drake Deming; Adam Burrows; Carl J. Grillmair
We analyze all existing secondary eclipse time series spectroscopy of hot Jupiter HD 189733b acquired with the now defunct Spitzer/Infrared Spectrograph (IRS) instrument. We describe the novel approaches we develop to remove the systematic effects and extract accurate secondary eclipse depths as a function of wavelength in order to construct the emission spectrum of the exoplanet. We compare our results with a previous study by Grillmair et al. that did not examine all data sets available to us. We are able to confirm the detection of a water feature near 6 μm claimed by Grillmair et al. We compare the planetary emission spectrum to three model families—based on isothermal atmosphere, gray atmosphere, and two realizations of the complex radiative transfer model by Burrows et al., adopted in Grillmair et al.s study. While we are able to reject the simple isothermal and gray models based on the data at the 97% level just from the IRS data, these rejections hinge on eclipses measured within a relatively narrow wavelength range, between 5.5 and 7 μm. This underscores the need for observational studies with broad wavelength coverage and high spectral resolution, in order to obtain robust information on exoplanet atmospheres.
The Astrophysical Journal | 2016
Kamen Todorov; Michael R. Line; Jaime E. Pineda; Michael R. Meyer; Sascha P. Quanz; Sasha Hinkley; Jonathan J. Fortney
Spectral retrieval has proven to be a powerful tool for constraining the physical properties and atmospheric compositions of extrasolar planet atmospheres from observed spectra, primarily for transiting objects but also for directly imaged planets and brown dwarfs. Despite its strengths, this approach has been applied to only about a dozen targets. Determining the abundances of the main carbon and oxygen-bearing compounds in a planetary atmosphere can lead to the C/O ratio of the object, which is crucial in understanding its formation and migration history. We present a retrieval analysis on the published near-infrared spectrum of {\kappa} And b, a directly imaged substellar companion to a young B9 star. We fit the emission spectrum model utilizing a Markov Chain Monte Carlo algorithm. We estimate the abundance of water vapor, and its uncertainty, in the atmosphere of the object. In addition, we place an upper limit on the abundance of CH
The Astrophysical Journal | 2014
Joshua A. Kammer; Heather A. Knutson; Andrew W. Howard; Greg Laughlin; Drake Deming; Kamen Todorov; J.-M. Desert; Eric Agol; Adam Burrows; Jonathan J. Fortney; Nikole K. Lewis
_4
The Astronomical Journal | 2018
Michael Zhang; Heather A. Knutson; Tiffany Kataria; J. Schwartz; Nicolas B. Cowan; Adam Burrows; Jonathan J. Fortney; Kamen Todorov; Jean Michel Désert; Eric Agol; Drake Deming
. We compare qualitatively our results to studies that have applied model retrieval on multiband photometry and emission spectroscopy of hot Jupiters (extrasolar giant planets with orbital periods of several days) and the directly imaged giant planet HR 8799b.