Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katherine L. Williams is active.

Publication


Featured researches published by Katherine L. Williams.


PLOS Pathogens | 2010

Lethal Antibody Enhancement of Dengue Disease in Mice Is Prevented by Fc Modification

Scott J. Balsitis; Katherine L. Williams; Ruben Lachica; Diana Flores; Jennifer L. Kyle; Erin Mehlhop; Syd Johnson; Michael S. Diamond; P. Robert Beatty; Eva Harris

Immunity to one of the four dengue virus (DV) serotypes can increase disease severity in humans upon subsequent infection with another DV serotype. Serotype cross-reactive antibodies facilitate DV infection of myeloid cells in vitro by promoting virus entry via Fcγ receptors (FcγR), a process known as antibody-dependent enhancement (ADE). However, despite decades of investigation, no in vivo model for antibody enhancement of dengue disease severity has been described. Analogous to human infants who receive anti-DV antibodies by transplacental transfer and develop severe dengue disease during primary infection, we show here that passive administration of anti-DV antibodies is sufficient to enhance DV infection and disease in mice using both mouse-adapted and clinical DV isolates. Antibody-enhanced lethal disease featured many of the hallmarks of severe dengue disease in humans, including thrombocytopenia, vascular leakage, elevated serum cytokine levels, and increased systemic viral burden in serum and tissue phagocytes. Passive transfer of a high dose of serotype-specific antibodies eliminated viremia, but lower doses of these antibodies or cross-reactive polyclonal or monoclonal antibodies all enhanced disease in vivo even when antibody levels were neutralizing in vitro. In contrast, a genetically engineered antibody variant (E60-N297Q) that cannot bind FcγR exhibited prophylactic and therapeutic efficacy against ADE-induced lethal challenge. These observations provide insight into the pathogenesis of antibody-enhanced dengue disease and identify a novel strategy for the design of therapeutic antibodies against dengue.


Journal of Virology | 2010

Structure and Function Analysis of Therapeutic Monoclonal Antibodies against Dengue Virus Type 2

Soila Sukupolvi-Petty; S. Kyle Austin; Michael Engle; James D. Brien; Kimberly A. Dowd; Katherine L. Williams; Syd Johnson; Rebeca Rico-Hesse; Eva Harris; Theodore C. Pierson; Daved H. Fremont; Michael S. Diamond

ABSTRACT Dengue virus (DENV) is the most prevalent insect-transmitted viral disease in humans globally, and currently no specific therapy or vaccine is available. Protection against DENV and other related flaviviruses is associated with the development of antibodies against the viral envelope (E) protein. Although prior studies have characterized the neutralizing activity of monoclonal antibodies (MAbs) against DENV type 2 (DENV-2), none have compared simultaneously the inhibitory activity against a genetically diverse range of strains in vitro, the protective capacity in animals, and the localization of epitopes. Here, with the goal of identifying MAbs that can serve as postexposure therapy, we investigated in detail the functional activity of a large panel of new anti-DENV-2 mouse MAbs. Binding sites were mapped by yeast surface display and neutralization escape, cell culture inhibition assays were performed with homologous and heterologous strains, and prophylactic and therapeutic activity was evaluated with two mouse models. Protective MAbs localized to epitopes on the lateral ridge of domain I (DI), the dimer interface, lateral ridge, and fusion loop of DII, and the lateral ridge, C-C′ loop, and A strand of DIII. Several MAbs inefficiently inhibited at least one DENV-2 strain of a distinct genotype, suggesting that recognition of neutralizing epitopes varies with strain diversity. Moreover, antibody potency generally correlated with a narrowed genotype and serotype specificity. Five MAbs functioned efficiently as postexposure therapy when administered as a single dose, even 3 days after intracranial infection of BALB/c mice. Overall, these studies define the structural and functional complexity of antibodies against DENV-2 with protective potential.


PLOS Neglected Tropical Diseases | 2013

Symptomatic versus inapparent outcome in repeat dengue virus infections is influenced by the time interval between infections and study year.

Magelda Montoya; Lionel Gresh; Juan Carlos Mercado; Katherine L. Williams; Maria José Vargas; Gamaliel Gutierrez; Guillermina Kuan; Aubree Gordon; Angel Balmaseda; Eva Harris

Four dengue virus serotypes (DENV1-4) circulate globally, causing more human illness than any other arthropod-borne virus. Dengue can present as a range of clinical manifestations from undifferentiated fever to Dengue Fever to severe, life-threatening syndromes. However, most DENV infections are inapparent. Yet, little is known about determinants of inapparent versus symptomatic DENV infection outcome. Here, we analyzed over 2,000 DENV infections from 2004 to 2011 in a prospective pediatric cohort study in Managua, Nicaragua. Symptomatic cases were captured at the study health center, and paired healthy annual samples were examined on a yearly basis using serological methods to identify inapparent DENV infections. Overall, inapparent and symptomatic DENV infections were equally distributed by sex. The mean age of infection was 1.2 years higher for symptomatic DENV infections as compared to inapparent infections. Although inapparent versus symptomatic outcome did not differ by infection number (first, second or third/post-second DENV infections), substantial variation in the proportion of symptomatic DENV infections among all DENV infections was observed across study years. In participants with repeat DENV infections, the time interval between a first inapparent DENV infection and a second inapparent infection was significantly shorter than the interval between a first inapparent and a second symptomatic infection. This difference was not observed in subsequent infections. This result was confirmed using two different serological techniques that measure total anti-DENV antibodies and serotype-specific neutralizing antibodies, respectively. Taken together, these findings show that, in this study, age, study year and time interval between consecutive DENV infections influence inapparent versus symptomatic infection outcome, while sex and infection number had no significant effect. Moreover, these results suggest that the window of cross-protection induced by a first infection with DENV against a second symptomatic infection is approximately 2 years. These findings are important for modeling dengue epidemics and development of vaccines.


PLOS Pathogens | 2014

Dengue Viruses Are Enhanced by Distinct Populations of Serotype Cross-Reactive Antibodies in Human Immune Sera

Ruklanthi de Alwis; Katherine L. Williams; Michael A. Schmid; Chih Yun Lai; Bhumi Patel; Scott A. Smith; James E. Crowe; Wei-Kung Wang; Eva Harris; Aravinda M. de Silva

Dengue viruses (DENV) are mosquito-borne flaviviruses of global importance. DENV exist as four serotypes, DENV1-DENV4. Following a primary infection, individuals produce DENV-specific antibodies that bind only to the serotype of infection and other antibodies that cross-react with two or more serotypes. People exposed to a secondary DENV infection with another serotype are at greater risk of developing more severe forms of dengue disease. The increased risk of severe dengue in people experiencing repeat DENV infections appear to be due, at least in part, to the ability of pre-existing serotype cross-reactive antibodies to form virus-antibody complexes that can productively infect Fcγ receptor-bearing target cells. While the theory of antibody-dependent enhancement (ADE) is supported by several human and small animal model studies, the specific viral antigens and epitopes recognized by enhancing human antibodies after natural infections have not been fully defined. We used antibody-depletion techniques to remove DENV-specific antibody sub-populations from primary DENV-immune human sera. The effects of removing specific antibody populations on ADE were tested both in vitro using K562 cells and in vivo using the AG129 mouse model. Removal of serotype cross-reactive antibodies ablated enhancement of heterotypic virus infection in vitro and antibody-enhanced mortality in vivo. Further depletion studies using recombinant viral antigens showed that although the removal of DENV E-specific antibodies using recombinant E (rE) protein resulted in a partial reduction in DENV enhancement, there was a significant residual enhancement remaining. Competition ADE studies using prM-specific Fab fragments in human immune sera showed that both rE-specific and prM-specific antibodies in primary DENV-immune sera significantly contribute to enhancement of heterotypic DENV infection in vitro. Identification of the targets of DENV-enhancing antibodies should contribute to the development of safe, non-enhancing vaccines against dengue.


Virology | 2012

Antibodies targeting dengue virus envelope domain III are not required for serotype-specific protection or prevention of enhancement in vivo

Katherine L. Williams; Wahala M.P.B. Wahala; Susana Orozco; Aravinda M. de Silva; Eva Harris

The envelope (E) protein of dengue virus (DENV) is composed of three domains (EDI, EDII, EDIII) and is the main target of neutralizing antibodies. Many monoclonal antibodies that bind EDIII strongly neutralize DENV. However in vitro studies indicate that anti-EDIII antibodies contribute little to the neutralizing potency of human DENV-immune serum. In this study, we assess the role of anti-EDIII antibodies in mouse and human DENV-immune serum in neutralizing or enhancing DENV infection in mice. We demonstrate that EDIII-depleted human DENV-immune serum was protective against homologous DENV infection in vivo. Although EDIII-depleted DENV-immune mouse serum demonstrated decreased neutralization potency in vitro, reduced protection in some organs, and enhanced disease in vivo, administration of increased volumes of EDIII-depleted serum abrogated these effects. These data indicate that anti-EDIII antibodies contribute to protection and minimize enhancement when present, but can be replaced by neutralizing antibodies targeting other epitopes on the dengue virion.


PLOS Pathogens | 2013

Therapeutic Efficacy of Antibodies Lacking FcγR against Lethal Dengue Virus Infection Is Due to Neutralizing Potency and Blocking of Enhancing Antibodies

Katherine L. Williams; Soila Sukupolvi-Petty; Martina Beltramello; Syd Johnson; Federica Sallusto; Antonio Lanzavecchia; Michael S. Diamond; Eva Harris

Dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS) are life-threatening complications following infection with one of the four serotypes of dengue virus (DENV). At present, no vaccine or antiviral therapies are available against dengue. Here, we characterized a panel of eight human or mouse-human chimeric monoclonal antibodies (MAbs) and their modified variants lacking effector function and dissected the mechanism by which some protect against antibody-enhanced lethal DENV infection. We found that neutralizing modified MAbs that recognize the fusion loop or the A strand epitopes on domains II and III of the envelope protein, respectively, act therapeutically by competing with and/or displacing enhancing antibodies. By analyzing these relationships, we developed a novel in vitro suppression-of-enhancement assay that predicts the ability of modified MAbs to act therapeutically against antibody-enhanced disease in vivo. These studies provide new insight into the biology of DENV pathogenesis and the requirements for antibodies to treat lethal DENV disease.


PLOS ONE | 2011

Dengue reporter virus particles for measuring neutralizing antibodies against each of the four dengue serotypes.

Kimberly Mattia; Bridget A. Puffer; Katherine L. Williams; Ritela Gonzalez; Meredith Murray; Emily Sluzas; Dan Pagano; Sandya Ajith; Megan Bower; Eli Berdougo; Eva Harris; Benjamin J. Doranz

The lack of reliable, high-throughput tools for characterizing anti-dengue virus (DENV) antibodies in large numbers of serum samples has been an obstacle in understanding the impact of neutralizing antibodies on disease progression and vaccine efficacy. A reporter system using pseudoinfectious DENV reporter virus particles (RVPs) was previously developed by others to facilitate the genetic manipulation and biological characterization of DENV virions. In the current study, we demonstrate the diagnostic utility of DENV RVPs for measuring neutralizing antibodies in human serum samples against all four DENV serotypes, with attention to the suitability of DENV RVPs for large-scale, long-term studies. DENV RVPs used against human sera yielded serotype-specific responses and reproducible neutralization titers that were in statistical agreement with Plaque Reduction Neutralization Test (PRNT) results. DENV RVPs were also used to measure neutralization titers against the four DENV serotypes in a panel of human sera from a clinical study of dengue patients. The high-throughput capability, stability, rapidity, and reproducibility of assays using DENV RVPs offer advantages for detecting immune responses that can be applied to large-scale clinical studies of DENV infection and vaccination.


PLOS Neglected Tropical Diseases | 2013

Analysis of cross-reactive antibodies recognizing the fusion loop of envelope protein and correlation with neutralizing antibody titers in Nicaraguan dengue cases.

Chih-Yun Lai; Katherine L. Williams; Yi-Chieh Wu; Sarah Knight; Angel Balmaseda; Eva Harris; Wei-Kung Wang

Dengue virus (DENV) is the leading cause of arboviral diseases in humans worldwide. The envelope (E) protein of DENV is the major target of neutralizing antibodies (Abs). Previous studies have shown that a significant proportion of anti-E Abs in human serum after DENV infection recognize the highly conserved fusion loop (FL) of E protein. The role of anti-FL Abs in protection against subsequent DENV infection versus pathogenesis remains unclear. A human anti-E monoclonal Ab was used as a standard in a virion-capture ELISA to measure the concentration of anti-E Abs, [anti-E Abs], in dengue-immune sera from Nicaraguan patients collected 3, 6, 12 and 18 months post-infection. The proportion of anti-FL Abs was determined by capture ELISA using virus-like particles containing mutations in FL, and the concentration of anti-FL Abs, [anti-FL Abs], was calculated. Neutralization titers (NT50) were determined using a previously described flow cytometry-based assay. Analysis of sequential samples from 10 dengue patients revealed [anti-E Abs] and [anti-FL Abs] were higher in secondary than in primary DENV infections. While [anti-FL Abs] did not correlate with NT50 against the current infecting serotype, it correlated with NT50 against the serotypes to which patients had likely not yet been exposed (“non-exposed” serotypes) in 14 secondary DENV3 and 15 secondary DENV2 cases. These findings demonstrate the kinetics of anti-FL Abs and provide evidence that anti-FL Abs play a protective role against “non-exposed” serotypes after secondary DENV infection.


Journal of Virology | 2013

Protection by Immunoglobulin Dual-Affinity Retargeting Antibodies against Dengue Virus

James D. Brien; Soila Sukupolvi-Petty; Katherine L. Williams; Chia-Ying Kao Lam; Michael Schmid; Syd Johnson; Eva Harris; Michael S. Diamond

ABSTRACT Dengue viruses are the most common arthropod-transmitted viral infection, with an estimated 390 million human infections annually and ∼3.6 billion people at risk. Currently, there are no approved vaccines or therapeutics available to control the global dengue virus disease burden. In this study, we demonstrate the binding, neutralizing activity, and therapeutic capacity of a novel bispecific dual-affinity retargeting molecule (DART) that limits infection of all four serotypes of dengue virus.


PLOS Neglected Tropical Diseases | 2017

Dengue virus specific IgY provides protection following lethal dengue virus challenge and is neutralizing in the absence of inducing antibody dependent enhancement

Ashley L. Fink; Katherine L. Williams; Eva Harris; Travis D. Alvine; Thomas A. Henderson; James Schiltz; Matthew L. Nilles; David S. Bradley

Dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) are severe disease manifestations that can occur following sequential infection with different dengue virus serotypes (DENV1-4). At present, there are no licensed therapies to treat DENV-induced disease. DHF and DSS are thought to be mediated by serotype cross-reactive antibodies that facilitate antibody-dependent enhancement (ADE) by binding to viral antigens and then Fcγ receptors (FcγR) on target myeloid cells. Using genetically engineered DENV-specific antibodies, it has been shown that the interaction between the Fc portion of serotype cross-reactive antibodies and FcγR is required to induce ADE. Additionally, it was demonstrated that these antibodies were as neutralizing as their non-modified variants, were incapable of inducing ADE, and were therapeutic following a lethal, antibody-enhanced infection. Therefore, we hypothesized that avian IgY, which do not interact with mammalian FcγR, would provide a novel therapy for DENV-induced disease. We demonstrate here that goose-derived anti-DENV2 IgY neutralized DENV2 and did not induce ADE in vitro. Anti-DENV2 IgY was also protective in vivo when administered 24 hours following a lethal DENV2 infection. We were also able to demonstrate via epitope mapping that both full-length and alternatively spliced anti-DENV2 IgY recognized different epitopes, including epitopes that have not been previously identified. These observations provide evidence for the potential therapeutic applications of goose-derived anti-DENV2 IgY.

Collaboration


Dive into the Katherine L. Williams's collaboration.

Top Co-Authors

Avatar

Eva Harris

University of California

View shared research outputs
Top Co-Authors

Avatar

Michael S. Diamond

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Soila Sukupolvi-Petty

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aravinda M. de Silva

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

James D. Brien

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Wei-Kung Wang

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adolfo García-Sastre

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge