Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katsuaki Ieguchi is active.

Publication


Featured researches published by Katsuaki Ieguchi.


Journal of Biological Chemistry | 2009

The Direct Binding of Insulin-like Growth Factor-1 (IGF-1) to Integrin αvβ3 Is Involved in IGF-1 Signaling

Jun Saegusa; Satoshi Yamaji; Katsuaki Ieguchi; Chun Yi Wu; Kit S. Lam; Fun Tong Liu; Yoko K. Takada; Yoshikazu Takada

It has been proposed that ligand occupancy of integrin αvβ3 with extracellular matrix ligands (e.g. vitronectin) plays a critical role in insulin-like growth factor-1 (IGF-1) signaling. We found that expression of αvβ3 enhanced IGF-1-induced proliferation of Chinese hamster ovary cells in serum-free conditions (in the absence of vitronectin). We hypothesized that the direct integrin binding to IGF-1 may play a role in IGF-1 signaling. We demonstrated that αvβ3 specifically and directly bound to IGF-1 in cell adhesion, enzyme-linked immunosorbent assay-type binding, and surface plasmon resonance studies. We localized the amino acid residues of IGF-1 that are critical for integrin binding by docking simulation and mutagenesis. We found that mutating two Arg residues at positions 36 and 37 in the C-domain of IGF-1 to Glu (the R36E/R37E mutation) effectively reduced integrin binding. Interestingly, although the mutant still bound to IGF1R, it was defective in inducing IGF1R phosphorylation, AKT and ERK1/2 activation, and cell proliferation. Furthermore wild type IGF-1 mediated co-precipitation of αvβ3 and IGF1R, whereas the R36E/R37E mutant did not, suggesting that IGF-1 mediates the interaction between αvβ3 and IGF1R. These results suggest that the direct binding to IGF-1 to integrin αvβ3 plays a role in IGF-1 signaling through ternary complex formation (αvβ3-IGF-IGF1R), and integrin-IGF-1 interaction is a novel target for drug discovery.


Journal of Biological Chemistry | 2010

Direct binding of the EGF-like domain of neuregulin-1 to integrins (αvβ3 and α6β4) is involved in neuregulin-1/ErbB signaling

Katsuaki Ieguchi; Masaaki Fujita; Zi Ma; Parastoo Davari; Yukimasa Taniguchi; Kiyotoshi Sekiguchi; Bobby Z. Wang; Yoko K. Takada; Yoshikazu Takada

Integrin-growth factor receptor cross-talk plays a role in growth factor signaling, but the specifics are unclear. In a current model, integrins and growth factor receptors independently bind to their ligands (extracellular matrix and growth factors, respectively). We discovered that neuregulin-1 (NRG1), either as an isolated EGF-like domain or as a native multi-domain form, binds to integrins αvβ3 (with a KD of 1.36 × 10−7 m) and α6β4. Docking simulation predicted that three Lys residues at positions 180, 184, and 186 of the EGF-like domain are involved in integrin binding. Mutating these residues to Glu individually or in combination markedly suppressed integrin binding and ErbB3 phosphorylation. Mutating all three Lys residues to Glu (the 3KE mutation) did not affect the ability of NRG1 to bind to ErbB3 but markedly reduced the ability of NRG1 to induce ErbB3 phosphorylation and AKT and Erk1/2 activation in MCF-7 and T47D human breast cancer cells. This suggests that direct integrin binding to NRG1 is critical for NRG1/ErbB signaling. Notably, stimulation of cells with WT NRG1 induced co-precipitation of ErbB3 with α6β4 and with αvβ3 to a much lower extent. This suggests that WT NRG1 induces integrin-NRG1-ErbB3 ternary complex formation. In contrast, the 3KE mutant was much less effective in inducing ternary complex formation than WT NRG1, suggesting that this process depends on the ability of NRG1 to bind to integrins. These results suggest that direct NRG1-integrin interaction mediates integrin-ErbB cross-talk and that α6β4 plays a major role in NRG-ErbB signaling in these cancer cells.


Journal of Biological Chemistry | 2012

Cross-talk between Integrin α6β4 and Insulin-like Growth Factor-1 Receptor (IGF1R) through Direct α6β4 Binding to IGF1 and Subsequent α6β4-IGF1-IGF1R Ternary Complex Formation in Anchorage-independent Conditions

Masaaki Fujita; Katsuaki Ieguchi; Parastoo Davari; Satoshi Yamaji; Yukimasa Taniguchi; Kiyotoshi Sekiguchi; Yoko K. Takada; Yoshikazu Takada

Background: Integrin αvβ3-extracellular matrix interaction and/or αvβ3 binding to insulin-like growth factor-1 (IGF1; and integrin-IGF1-IGF1 receptor ternary complex formation) is critical for IGF signaling. Results: α6β4 directly bound to IGF1 and mediated IGF1 signaling through ternary complex formation. α6β4 is required when cell-matrix adhesion is reduced or in three-dimensional culture. Conclusion: α6β4-IGF1 binding is important for IGF signaling in anchorage-independent conditions. Significance: The integrin-IGF interaction is a novel therapeutic target. Integrin αvβ3 plays a role in insulin-like growth factor-1 (IGF1) signaling (integrin-IGF1 receptor (IGF1R) cross-talk). The specifics of the cross-talk are, however, unclear. In a current model, “ligand occupancy” of αvβ3 (i.e. the binding of extracellular matrix proteins) enhances signaling induced by IGF1 binding to IGF1R. We recently reported that IGF1 directly binds to αvβ3 and induces αvβ3-IGF1-IGF1R ternary complex formation. Consistently, the integrin binding-defective IGF1 mutant (R36E/R37E) is defective in inducing ternary complex formation and IGF signaling, but it still binds to IGF1R. Like αvβ3, integrin α6β4 is overexpressed in many cancers and is implicated in cancer progression. Here, we discovered that α6β4 directly bound to IGF1, but not to R36E/R37E. Grafting the β4 sequence WPNSDP (residues 167–172), which corresponds to the specificity loop of β3, to integrin β1 markedly enhanced IGF1 binding to β1, suggesting that the WPNSDP sequence is involved in IGF1 recognition. WT IGF1 induced α6β4-IGF1-IGF1R ternary complex formation, whereas R36E/R37E did not. When cells were attached to matrix, exogenous IGF1 or α6β4 expression had little or no effect on intracellular signaling. When cell-matrix adhesion was reduced (in poly(2-hydroxyethyl methacrylate-coated plates), IGF1 induced intracellular signaling and enhanced cell survival in an α6β4-dependent manner. Also IGF1 enhanced colony formation in soft agar in an α6β4-dependent manner. These results suggest that IGF binding to α6β4 plays a major role in IGF signaling in anchorage-independent conditions, which mimic the in vivo environment, and is a novel therapeutic target.


Oncogene | 2014

ADAM12-cleaved ephrin-A1 contributes to lung metastasis

Katsuaki Ieguchi; Takeshi Tomita; Tsutomu Omori; Akiko Komatsu; Atsuko Deguchi; Junko Masuda; S. L. Duffy; Mark G. Coulthard; Andrew W. Boyd; Yoshiro Maru

Eph receptor tyrosine kinases and their ephrin ligands have been implicated in neuronal development and neovascularization. Overexpression of ephrin-A1 has been implicated in tumor progression and poor prognosis. However, the mechanisms are not clear. Here, we report a role of the Eph/ephrin system in a cell adhesion mechanism. Clustered erythropoietin-producing hepatocellular receptor A1 (EphA1)/ephrin-A1 complexes on the plasma membrane did not undergo endocytosis, and the cell remained adherent to one another. The cell–cell contacts were maintained in an Eph tyrosine kinase activity-independent manner even in the absence of E-cadherin. EphA1 and ephrin-A1 co-localized in pulmonary endothelial cells, and regulated vascular permeability and metastasis in the lungs. We identified ADAM12 (A disintegrin and metalloproteinase 12) as an EphA1-binding partner by yeast two-hybrid screening and found that ADAM12 enhanced ephrin-A1 cleavage in response to transforming growth factor-β1 in primary tumors. Released soluble ephrin-A1 in the serum deteriorated the EphA1/ephrin-A1-mediated cell adhesion in the lungs in an endocrine manner, causing lung hyperpermeability that facilitated tumor cell entry into the lungs. Depletion of soluble ephrin-A1 by its neutralizing antibody significantly inhibited lung metastasis.


Journal of Biological Chemistry | 2007

Role of the Guanine Nucleotide Exchange Factor Ost in Negative Regulation of Receptor Endocytosis by the Small GTPase Rac1

Katsuaki Ieguchi; Shuji Ueda; Tohru Kataoka; Takaya Satoh

The Rho family of GTPases has been implicated in the regulation of intracellular vesicle trafficking. Here, we investigated the mechanism underlying the negative regulation of clathrin-mediated endocytosis of cell surface receptors mediated by the Rho family protein Rac1. Contrary to previous reports, only the activated mutant of Rac1, but not other Rho family members including RhoA and Cdc42, suppressed internalization of the transferrin receptor. On the other hand, down-regulation of Rac1 expression by RNA interference resulted in enhanced receptor internalization, suggesting that endogenous Rac1 in fact functions as a negative regulator. We identified a guanine nucleotide exchange factor splice variant designated Ost-III, which contains a unique C-terminal region including an Src homology 3 domain, as a regulator of Rac1 involved in the inhibition of receptor endocytosis. In contrast, other splice variants Ost-I and Ost-II exerted virtually no effect on receptor endocytosis. We also examined subcellular localization of synaptojanin 2, a putative Rac1 effector implicated in negative regulation of receptor endocytosis. Each Ost splice variant induced distinct subcellular localization of synaptojanin 2, depending on Rac1 activation. Furthermore, we isolated γ-aminobutyric acid type A receptor-associated protein (GABARAP) as a protein that binds to the C-terminal region of Ost-III. When ectopically expressed, GABARAP was co-localized with Ost-III and potently suppressed the Ost-III-dependent Rac1 activation and the inhibition of receptor endocytosis. Lipid modification of GABARAP was necessary for the suppression of Ost-III. These results are discussed in terms of subcellular region-specific regulation of the Rac1-dependent signaling pathway that negatively regulates clathrin-mediated endocytosis.


Journal of Biological Chemistry | 2013

An integrin binding-defective mutant of insulin-like growth factor-1 (R36E/R37E IGF1) acts as a dominant-negative antagonist of the IGF1 receptor (IGF1R) and suppresses tumorigenesis but still binds to IGF1R.

Masaaki Fujita; Katsuaki Ieguchi; Dora M. Cedano-Prieto; Andrew Fong; Charles L. Wilkerson; Jane Q. Chen; Mac Wu; Su Hao Lo; Anthony T.W. Cheung; Machelle D. Wilson; Robert D. Cardiff; Alexander D. Borowsky; Yoko K. Takada; Yoshikazu Takada

Background: The integrin binding-defective mutant of IGF1 (R36E/R37E) is functionally defective and does not induce ternary complex formation (integrin-IGF1-IGF1R). Results: R36E/R37E suppressed signaling induced by WT IGF1, the binding of WT IGF1 to cells, ternary complex formation, cell viability, and tumorigenesis. Conclusion: R36E/R37E is a dominant-negative antagonist of IGF signaling. Significance: R36E/R37E has potential as a therapeutic agent. Insulin-like growth factor-1 (IGF1) is a major therapeutic target for cancer. We recently reported that IGF1 directly binds to integrins (αvβ3 and α6β4) and induces ternary complex formation (integrin-IGF1-IGF1 receptor (IGF1R)) and that the integrin binding-defective mutant of IGF1 (R36E/R37E) is defective in signaling and ternary complex formation. These findings predict that R36E/R37E competes with WT IGF1 for binding to IGF1R and inhibits IGF signaling. Here, we described that excess R36E/R37E suppressed cell viability increased by WT IGF1 in vitro in non-transformed cells. We studied the effect of R36E/R37E on viability and tumorigenesis in cancer cell lines. We did not detect an effect of WT IGF1 or R36E/R37E in cancer cells under anchorage-dependent conditions. However, under anchorage-independent conditions, WT IGF1 enhanced cell viability and induced signals, whereas R36E/R37E did not. Notably, excess R36E/R37E suppressed cell viability and signaling induced by WT IGF1 under anchorage-independent conditions. Using cancer cells stably expressing WT IGF1 or R36E/R37E, we determined that R36E/R37E suppressed tumorigenesis in vivo, whereas WT IGF1 markedly enhanced it. R36E/R37E suppressed the binding of WT IGF1 to the cell surface and the subsequent ternary complex formation induced by WT IGF1. R36E/R37E suppressed activation of IGF1R by insulin. WT IGF1, but not R36E/R37E, induced ternary complex formation with the IGF1R/insulin receptor hybrid. These findings suggest that 1) IGF1 induces signals under anchorage-independent conditions and that 2) R36E/R37E acts as a dominant-negative inhibitor of IGF1R (IGF1 decoy). Our results are consistent with a model in which ternary complex formation is critical for IGF signaling.


PLOS ONE | 2010

A novel fibroblast growth factor-1 (FGF1) mutant that acts as an FGF antagonist.

Satoshi Yamaji; Jun Saegusa; Katsuaki Ieguchi; Masaaki Fujita; Seiji Mori; Yoko K. Takada; Yoshikazu Takada

Background Crosstalk between integrins and FGF receptors has been implicated in FGF signaling, but the specifics of the crosstalk are unclear. We recently discovered that 1) FGF1 directly binds to integrin αvβ3, 2) the integrin-binding site and FGF receptor (FGFR) binding site are distinct, and 3) the integrin-binding-defective FGF1 mutant (R50E) is defective in inducing FGF signaling although R50E still binds to FGFR and heparin and induces transient ERK1/2 activation. Principal Findings We tested if excess R50E affect DNA synthesis and cell survival induced by WT FGF1 in BaF3 mouse pro-B cells expressing human FGFR1. R50E suppressed DNA synthesis and cell proliferation induced by WT FGF1. We tested if WT FGF1 and R50E generate integrin-FGF1-FGFR ternary complex. WT FGF1 induced ternary complex formation (integrin-FGF-FGFR1) and recruitment of SHP-2 to the complex in NIH 3T3 cells and human umbilical endothelial cells, but R50E was defective in these functions. It has been reported that sustained ERK1/2 activation is integrin-dependent and crucial to cell cycle entry upon FGF stimulation. We thus determined the time-course of ERK1/2 activation induced by WT FGF1 and R50E. We found that WT FGF1 induced sustained activation of ERK1/2, but R50E was defective in this function. Conclusions/Significance Our results suggest that 1) R50E is a dominant-negative mutant, 2) Ternary complex formation is involved in FGF signaling, 3) The defect of R50E to bind to integrin may be directly related to the antagonistic action of R50E. Taken together, these results suggest that R50E has potential as a therapeutic in cancer.


Journal of Biological Chemistry | 2015

LINGO-1 protein interacts with the p75 neurotrophin receptor in intracellular membrane compartments

James S. Meabon; Rian de Laat; Katsuaki Ieguchi; Jesse C. Wiley; Mark P. Hudson; Mark Bothwell

Background: LINGO-1·p75NTR·NgR complexes at the cell surface are believed to mediate responses to myelin inhibitors of axon growth. Results: LINGO-1 is intracellular and competes with NgR for binding to p75NTR. Conclusion: The existence of cell-surface ternary complexes of p75NTR, NgR, and LINGO-1 cannot be confirmed. Significance: The commonly accepted mechanism for p75NTR-mediated responses of axons to inhibitory myelin proteins is untenable. Axon outgrowth inhibition in response to trauma is thought to be mediated via the binding of myelin-associated inhibitory factors (e.g. Nogo-66, myelin-associated glycoprotein, oligodendrocyte myelin glycoprotein, and myelin basic protein) to a putative tripartite LINGO-1·p75NTR·Nogo-66 receptor (NgR) complex at the cell surface. We found that endogenous LINGO-1 expression in neurons in the cortex and cerebellum is intracellular. Mutation or truncation of the highly conserved LINGO-1 C terminus altered this intracellular localization, causing poor intracellular retention and increased plasma membrane expression. p75NTR associated predominantly with natively expressed LINGO-1 containing immature N-glycans, characteristic of protein that has not completed trans-Golgi-mediated processing, whereas mutant forms of LINGO-1 with enhanced plasma membrane expression did not associate with p75NTR. Co-immunoprecipitation experiments demonstrated that LINGO-1 and NgR competed for binding to p75NTR in a manner that is difficult to reconcile with the existence of a LINGO-1·p75NTR·NgR ternary complex. These findings contradict models postulating functional LINGO-1·p75NTR·NgR complexes in the plasma membrane.


Molecular and Cellular Neuroscience | 2016

Intracellular LINGO-1 negatively regulates Trk neurotrophin receptor signaling

James S. Meabon; Rian de Laat; Katsuaki Ieguchi; Dmitry Serbzhinsky; Mark P. Hudson; B. Russel Huber; Jesse C. Wiley; Mark Bothwell

Neurotrophins, essential regulators of many aspects of neuronal differentiation and function, signal via four receptors, p75, TrkA, TrkB and TrkC. The three Trk paralogs are members of the LIG superfamily of membrane proteins, which share extracellular domains consisting of leucine-rich repeat and C2 Ig domains. Another LIG protein, LINGO-1 has been reported to bind and influence signaling of p75 as well as TrkA, TrkB and TrkC. Here we examine the manner in which LINGO-1 influences the function of TrkA, TrkB and TrkC. We report that Trk activation promotes Trk association with LINGO-1, and that this association promotes Trk degradation by a lysosomal mechanism. This mechanism resembles the mechanism by which another LIG protein, LRIG1, promotes lysosomal degradation of receptor tyrosine kinases such as the EGF receptor. We present evidence indicating that the Trk/LINGO-1 interaction occurs, in part, within recycling endosomes. We show that a mutant form of LINGO-1, with much of the extracellular domain deleted, has the capacity to enhance TrkA signaling in PC12 cells, possibly by acting as an inhibitor of Trk down-regulation by full length LINGO-1. We propose that LINGO-1 functions as a negative feedback regulator of signaling by cognate receptor tyrosine kinases including TrkA, TrkB and TrkC.


PLOS ONE | 2015

Human serum amyloid A3 (SAA3) protein, expressed as a fusion protein with SAA2, binds the oxidized low density lipoprotein receptor.

Takeshi Tomita; Katsuaki Ieguchi; Tatsuya Sawamura; Yoshiro Maru

Serum amyloid A3 (SAA3) possesses characteristics distinct from the other serum amyloid A isoforms, SAA1, SAA2, and SAA4. High density lipoprotein contains the latter three isoforms, but not SAA3. The expression of mouse SAA3 (mSAA3) is known to be up-regulated extrahepatically in inflammatory responses, and acts as an endogenous ligand for the toll-like receptor 4/MD-2 complex. We previously reported that mSAA3 plays an important role in facilitating tumor metastasis by attracting circulating tumor cells and enhancing hyperpermeability in the lungs. On the other hand, human SAA3 (hSAA3) has long been regarded as a pseudogene, which is in contrast to the abundant expression levels of the other isoforms. Although the nucleotide sequence of hSAA3 is very similar to that of the other SAAs, a single oligonucleotide insertion in exon 2 causes a frame-shift to generate a unique amino acid sequence. In the present study, we identified that hSAA3 was transcribed in the hSAA2-SAA3 fusion transcripts of several human cell lines. In the fusion transcript, hSAA2 exon 3 was connected to hSAA3 exon 1 or hSAA3 exon 2, located approximately 130kb downstream from hSAA2 exon 3 in the genome, which suggested that it is produced by alternative splicing. Furthermore, we succeeded in detecting and isolating hSAA3 protein for the first time by an immunoprecipitation-enzyme linked immune assay system using monoclonal and polyclonal antibodies that recognize the hSAA3 unique amino acid sequence. We also demonstrated that hSAA3 bound oxidized low density lipoprotein receptor (oxLDL receptor, LOX-1) and elevated the phosphorylation of ERK, the intracellular MAP-kinase signaling protein.

Collaboration


Dive into the Katsuaki Ieguchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoko K. Takada

University of California

View shared research outputs
Top Co-Authors

Avatar

Masaaki Fujita

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Atsuko Deguchi

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Satoshi Yamaji

University of California

View shared research outputs
Top Co-Authors

Avatar

Morichika Takita

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge